Merge remote-tracking branch 'origin/vis' into develop
# Conflicts: # .gitignore # DAS/simulator.py # study.py
This commit is contained in:
commit
35d1790429
|
@ -3,3 +3,5 @@
|
|||
results/*
|
||||
myenv
|
||||
doc/_build
|
||||
!results/plots.py
|
||||
Frontend/
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from DAS.simulator import *
|
||||
from DAS.configuration import *
|
||||
from DAS.shape import *
|
||||
from DAS.visualizer import *
|
||||
|
|
|
@ -42,7 +42,6 @@ class Simulator:
|
|||
|
||||
def initNetwork(self):
|
||||
"""It initializes the simulated network."""
|
||||
self.shape.netDegree = 6
|
||||
rowChannels = [[] for i in range(self.shape.blockSize)]
|
||||
columnChannels = [[] for i in range(self.shape.blockSize)]
|
||||
for v in self.validators:
|
||||
|
|
|
@ -0,0 +1,138 @@
|
|||
#!/bin/python3
|
||||
import os, sys
|
||||
import time
|
||||
import xml.etree.ElementTree as ET
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import seaborn as sns
|
||||
from itertools import combinations
|
||||
|
||||
class Visualizer:
|
||||
|
||||
def __init__(self, execID):
|
||||
self.execID = execID
|
||||
self.folderPath = "results/"+self.execID
|
||||
self.parameters = ['run', 'blockSize', 'failureRate', 'numberValidators', 'netDegree', 'chi']
|
||||
self.minimumDataPoints = 2
|
||||
|
||||
def plottingData(self):
|
||||
#Store data with a unique key for each params combination
|
||||
data = {}
|
||||
#Loop over the xml files in the folder
|
||||
for filename in os.listdir(self.folderPath):
|
||||
#Loop over the xmls and store the data in variables
|
||||
if filename.endswith('.xml'):
|
||||
tree = ET.parse(os.path.join(self.folderPath, filename))
|
||||
root = tree.getroot()
|
||||
run = int(root.find('run').text)
|
||||
blockSize = int(root.find('blockSize').text)
|
||||
failureRate = int(root.find('failureRate').text)
|
||||
numberValidators = int(root.find('numberValidators').text)
|
||||
netDegree = int(root.find('netDegree').text)
|
||||
chi = int(root.find('chi').text)
|
||||
tta = int(root.find('tta').text)
|
||||
|
||||
# Loop over all possible combinations of length 4 of the parameters
|
||||
for combination in combinations(self.parameters, 4):
|
||||
# Get the indices and values of the parameters in the combination
|
||||
indices = [self.parameters.index(element) for element in combination]
|
||||
selectedValues = [run, blockSize, failureRate, numberValidators, netDegree, chi]
|
||||
values = [selectedValues[index] for index in indices]
|
||||
names = [self.parameters[i] for i in indices]
|
||||
keyComponents = [f"{name}_{value}" for name, value in zip(names, values)]
|
||||
key = tuple(keyComponents[:4])
|
||||
#Get the names of the other 2 parameters that are not included in the key
|
||||
otherParams = [self.parameters[i] for i in range(6) if i not in indices]
|
||||
#Append the values of the other 2 parameters and the ttas to the lists for the key
|
||||
otherIndices = [i for i in range(len(self.parameters)) if i not in indices]
|
||||
|
||||
#Initialize the dictionary for the key if it doesn't exist yet
|
||||
if key not in data:
|
||||
data[key] = {}
|
||||
#Initialize lists for the other 2 parameters and the ttas with the key
|
||||
data[key][otherParams[0]] = []
|
||||
data[key][otherParams[1]] = []
|
||||
data[key]['ttas'] = []
|
||||
|
||||
if otherParams[0] in data[key]:
|
||||
data[key][otherParams[0]].append(selectedValues[otherIndices[0]])
|
||||
else:
|
||||
data[key][otherParams[0]] = [selectedValues[otherIndices[0]]]
|
||||
if otherParams[1] in data[key]:
|
||||
data[key][otherParams[1]].append(selectedValues[otherIndices[1]])
|
||||
else:
|
||||
data[key][otherParams[1]] = [selectedValues[otherIndices[1]]]
|
||||
data[key]['ttas'].append(tta)
|
||||
print("Getting data from the folder...")
|
||||
return data
|
||||
|
||||
def similarKeys(self, data):
|
||||
#Get the keys for all data with the same x and y labels
|
||||
filteredKeys = {}
|
||||
for key1, value1 in data.items():
|
||||
subKeys1 = list(value1.keys())
|
||||
filteredKeys[(subKeys1[0], subKeys1[1])] = [key1]
|
||||
for key2, value2 in data.items():
|
||||
subKeys2 = list(value2.keys())
|
||||
if key1 != key2 and subKeys1[0] == subKeys2[0] and subKeys1[1] == subKeys2[1]:
|
||||
try:
|
||||
filteredKeys[(subKeys1[0], subKeys1[1])].append(key2)
|
||||
except KeyError:
|
||||
filteredKeys[(subKeys1[0], subKeys1[1])] = [key2]
|
||||
print("Getting filtered keys from data...")
|
||||
return filteredKeys
|
||||
|
||||
def formatLabel(self, label):
|
||||
#Label formatting for the figures
|
||||
result = ''.join([f" {char}" if char.isupper() else char for char in label])
|
||||
return result.title()
|
||||
|
||||
def formatTitle(self, key):
|
||||
#Title formatting for the figures
|
||||
name = ''.join([f" {char}" if char.isupper() else char for char in key.split('_')[0]])
|
||||
number = key.split('_')[1]
|
||||
return f"{name.title()}: {number} "
|
||||
|
||||
def plotHeatmaps(self):
|
||||
#Plot and store the 2D heatmaps in subfolders
|
||||
data = self.plottingData()
|
||||
filteredKeys = self.similarKeys(data)
|
||||
print("Plotting heatmaps...")
|
||||
|
||||
#Create the directory if it doesn't exist already
|
||||
heatmapsFolder = self.folderPath + '/heatmaps'
|
||||
if not os.path.exists(heatmapsFolder):
|
||||
os.makedirs(heatmapsFolder)
|
||||
|
||||
#Plot
|
||||
for labels, keys in filteredKeys.items():
|
||||
for key in keys:
|
||||
xlabels = np.sort(np.unique(data[key][labels[0]]))
|
||||
ylabels = np.sort(np.unique(data[key][labels[1]]))
|
||||
if len(xlabels) < self.minimumDataPoints or len(ylabels) < self.minimumDataPoints:
|
||||
continue
|
||||
hist, xedges, yedges = np.histogram2d(data[key][labels[0]], data[key][labels[1]], bins=(len(xlabels), len(ylabels)), weights=data[key]['ttas'])
|
||||
hist = hist.T
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
sns.heatmap(hist, xticklabels=xlabels, yticklabels=ylabels, cmap='Purples', cbar_kws={'label': 'Time to block availability'}, linecolor='black', linewidths=0.3, annot=True, fmt=".2f", ax=ax)
|
||||
plt.xlabel(self.formatLabel(labels[0]))
|
||||
plt.ylabel(self.formatLabel(labels[1]))
|
||||
filename = ""
|
||||
title = ""
|
||||
paramValueCnt = 0
|
||||
for param in self.parameters:
|
||||
if param != labels[0] and param != labels[1]:
|
||||
filename += f"{key[paramValueCnt]}"
|
||||
formattedTitle = self.formatTitle(key[paramValueCnt])
|
||||
title += formattedTitle
|
||||
paramValueCnt += 1
|
||||
title_obj = plt.title(title)
|
||||
font_size = 16 * fig.get_size_inches()[0] / 10
|
||||
title_obj.set_fontsize(font_size)
|
||||
filename = filename + ".png"
|
||||
targetFolder = os.path.join(heatmapsFolder, f"{labels[0]}Vs{labels[1]}")
|
||||
if not os.path.exists(targetFolder):
|
||||
os.makedirs(targetFolder)
|
||||
plt.savefig(os.path.join(targetFolder, filename))
|
||||
plt.close()
|
||||
plt.clf()
|
32
study.py
32
study.py
|
@ -23,23 +23,25 @@ def study():
|
|||
start = time.time()
|
||||
|
||||
for run in range(config.numberRuns):
|
||||
for fr in range(config.failureRateStart, config.failureRateStop+1, config.failureRateStep):
|
||||
for chi in range(config.chiStart, config.chiStop+1, config.chiStep):
|
||||
for blockSize in range(config.blockSizeStart, config.blockSizeStop+1, config.blockSizeStep):
|
||||
for nv in range(config.nvStart, config.nvStop+1, config.nvStep):
|
||||
for netDegree in range(config.netDegreeStart, config.netDegreeStop+1, config.netDegreeStep):
|
||||
for nv in range(config.nvStart, config.nvStop+1, config.nvStep):
|
||||
for blockSize in range(config.blockSizeStart, config.blockSizeStop+1, config.blockSizeStep):
|
||||
for fr in range(config.failureRateStart, config.failureRateStop+1, config.failureRateStep):
|
||||
for netDegree in range(config.netDegreeStart, config.netDegreeStop+1, config.netDegreeStep):
|
||||
for chi in range(config.chiStart, config.chiStop+1, config.chiStep):
|
||||
|
||||
if not config.deterministic:
|
||||
random.seed(datetime.now())
|
||||
|
||||
shape = Shape(blockSize, nv, fr, chi, netDegree, run)
|
||||
sim.resetShape(shape)
|
||||
sim.initValidators()
|
||||
sim.initNetwork()
|
||||
result = sim.run()
|
||||
sim.logger.info("Shape: %s ... Block Available: %d in %d steps" % (str(sim.shape.__dict__), result.blockAvailable, len(result.missingVector)), extra=sim.format)
|
||||
results.append(copy.deepcopy(result))
|
||||
simCnt += 1
|
||||
# Network Degree has to be an even number
|
||||
if netDegree % 2 == 0:
|
||||
shape = Shape(blockSize, nv, fr, chi, netDegree, run)
|
||||
sim.resetShape(shape)
|
||||
sim.initValidators()
|
||||
sim.initNetwork()
|
||||
result = sim.run()
|
||||
sim.logger.info("Shape: %s ... Block Available: %d in %d steps" % (str(sim.shape.__dict__), result.blockAvailable, len(result.missingVector)), extra=sim.format)
|
||||
results.append(copy.deepcopy(result))
|
||||
simCnt += 1
|
||||
|
||||
end = time.time()
|
||||
sim.logger.info("A total of %d simulations ran in %d seconds" % (simCnt, end-start), extra=sim.format)
|
||||
|
@ -49,6 +51,10 @@ def study():
|
|||
res.dump(execID)
|
||||
sim.logger.info("Results dumped into results/%s/" % (execID), extra=sim.format)
|
||||
|
||||
visualization = 1
|
||||
if visualization:
|
||||
vis = Visualizer(execID)
|
||||
vis.plotHeatmaps()
|
||||
|
||||
|
||||
study()
|
||||
|
|
Loading…
Reference in New Issue