dagger-contracts/contracts/Groth16Verifier.sol
Mark Spanbroek 53999c74d3 Provide all gas to precompiles
Rationale: subtracting 2000 from the provided gas seems
arbitrary, and doesn't provide any benefits. Whether
verify() fails with an out-of-gas error, or returns
'false', in both cases the proof is not verified.

Co-Authored-By: Balazs Komuves <bkomuves@gmail.com>
2024-03-13 15:25:59 +01:00

187 lines
5.7 KiB
Solidity

// Copyright 2017 Christian Reitwiessner
// Copyright 2019 OKIMS
// Copyright 2024 Codex
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import "./Groth16.sol";
contract Groth16Verifier is IGroth16Verifier {
uint256 private constant _P =
21888242871839275222246405745257275088696311157297823662689037894645226208583;
uint256 private constant _R =
21888242871839275222246405745257275088548364400416034343698204186575808495617;
VerifyingKey private _verifyingKey;
struct VerifyingKey {
G1Point alpha1;
G2Point beta2;
G2Point gamma2;
G2Point delta2;
G1Point[] ic;
}
constructor(VerifyingKey memory key) {
_verifyingKey.alpha1 = key.alpha1;
_verifyingKey.beta2 = key.beta2;
_verifyingKey.gamma2 = key.gamma2;
_verifyingKey.delta2 = key.delta2;
for (uint i = 0; i < key.ic.length; i++) {
_verifyingKey.ic.push(key.ic[i]);
}
}
function _negate(G1Point memory point) private pure returns (G1Point memory) {
return G1Point(point.x, (_P - point.y) % _P);
}
function _add(
G1Point memory point1,
G1Point memory point2
) private view returns (bool success, G1Point memory sum) {
// Call the precompiled contract for addition on the alt_bn128 curve.
// The call will fail if the points are not valid group elements:
// https://eips.ethereum.org/EIPS/eip-196#exact-semantics
uint256[4] memory input;
input[0] = point1.x;
input[1] = point1.y;
input[2] = point2.x;
input[3] = point2.y;
// solhint-disable-next-line no-inline-assembly
assembly {
success := staticcall(gas(), 6, input, 128, sum, 64)
}
}
function _multiply(
G1Point memory point,
uint256 scalar
) private view returns (bool success, G1Point memory product) {
// Call the precompiled contract for scalar multiplication on the alt_bn128
// curve. The call will fail if the points are not valid group elements:
// https://eips.ethereum.org/EIPS/eip-196#exact-semantics
uint256[3] memory input;
input[0] = point.x;
input[1] = point.y;
input[2] = scalar;
// solhint-disable-next-line no-inline-assembly
assembly {
success := staticcall(gas(), 7, input, 96, product, 64)
}
}
function _checkPairing(
G1Point memory a1,
G2Point memory a2,
G1Point memory b1,
G2Point memory b2,
G1Point memory c1,
G2Point memory c2,
G1Point memory d1,
G2Point memory d2
) private view returns (bool success, uint256 outcome) {
// Call the precompiled contract for pairing check on the alt_bn128 curve.
// The call will fail if the points are not valid group elements:
// https://eips.ethereum.org/EIPS/eip-197#specification
uint256[24] memory input; // 4 pairs of G1 and G2 points
uint256[1] memory output;
input[0] = a1.x;
input[1] = a1.y;
input[2] = a2.x.imag;
input[3] = a2.x.real;
input[4] = a2.y.imag;
input[5] = a2.y.real;
input[6] = b1.x;
input[7] = b1.y;
input[8] = b2.x.imag;
input[9] = b2.x.real;
input[10] = b2.y.imag;
input[11] = b2.y.real;
input[12] = c1.x;
input[13] = c1.y;
input[14] = c2.x.imag;
input[15] = c2.x.real;
input[16] = c2.y.imag;
input[17] = c2.y.real;
input[18] = d1.x;
input[19] = d1.y;
input[20] = d2.x.imag;
input[21] = d2.x.real;
input[22] = d2.y.imag;
input[23] = d2.y.real;
// solhint-disable-next-line no-inline-assembly
assembly {
success := staticcall(gas(), 8, input, 768, output, 32)
}
return (success, output[0]);
}
function verify(
Groth16Proof calldata proof,
uint256[] memory input
) public view returns (bool success) {
// Check amount of public inputs
if (input.length + 1 != _verifyingKey.ic.length) {
return false;
}
// Check that public inputs are field elements
for (uint i = 0; i < input.length; i++) {
if (input[i] >= _R) {
return false;
}
}
// Compute the linear combination
G1Point memory combination = _verifyingKey.ic[0];
for (uint i = 0; i < input.length; i++) {
G1Point memory product;
(success, product) = _multiply(_verifyingKey.ic[i + 1], input[i]);
if (!success) {
return false;
}
(success, combination) = _add(combination, product);
if (!success) {
return false;
}
}
// Check the pairing
uint256 outcome;
(success, outcome) = _checkPairing(
_negate(proof.a),
proof.b,
_verifyingKey.alpha1,
_verifyingKey.beta2,
combination,
_verifyingKey.gamma2,
proof.c,
_verifyingKey.delta2
);
if (!success) {
return false;
}
return outcome == 1;
}
}