184 lines
5.8 KiB
Solidity
184 lines
5.8 KiB
Solidity
// Copyright 2017 Christian Reitwiessner
|
|
// Copyright 2019 OKIMS
|
|
// Copyright 2024 Codex
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
// SPDX-License-Identifier: MIT
|
|
pragma solidity 0.8.23;
|
|
import "./Groth16.sol";
|
|
|
|
library Pairing {
|
|
// The prime q in the base field F_q for G1
|
|
uint private constant _Q =
|
|
21888242871839275222246405745257275088696311157297823662689037894645226208583;
|
|
|
|
/// The negation of p, i.e. p.addition(p.negate()) should be zero.
|
|
function negate(G1Point memory p) internal pure returns (G1Point memory) {
|
|
if (p.x == 0 && p.y == 0) return G1Point(0, 0);
|
|
return G1Point(p.x, _Q - (p.y % _Q));
|
|
}
|
|
|
|
/// The sum of two points of G1
|
|
function add(
|
|
G1Point memory p1,
|
|
G1Point memory p2
|
|
) internal view returns (bool success, G1Point memory sum) {
|
|
uint[4] memory input;
|
|
input[0] = p1.x;
|
|
input[1] = p1.y;
|
|
input[2] = p2.x;
|
|
input[3] = p2.y;
|
|
// solhint-disable-next-line no-inline-assembly
|
|
assembly {
|
|
success := staticcall(sub(gas(), 2000), 6, input, 128, sum, 64)
|
|
}
|
|
}
|
|
|
|
/// The product of a point on G1 and a scalar, i.e.
|
|
/// p == p.scalarMul(1) and p.addition(p) == p.scalarMul(2) for all points p.
|
|
function multiply(
|
|
G1Point memory p,
|
|
uint s
|
|
) internal view returns (bool success, G1Point memory product) {
|
|
uint[3] memory input;
|
|
input[0] = p.x;
|
|
input[1] = p.y;
|
|
input[2] = s;
|
|
// solhint-disable-next-line no-inline-assembly
|
|
assembly {
|
|
success := staticcall(sub(gas(), 2000), 7, input, 96, product, 64)
|
|
}
|
|
}
|
|
|
|
/// The result of computing the pairing check
|
|
/// e(p1[0], p2[0]) * .... * e(p1[n], p2[n]) == 1
|
|
/// For example pairing([P1(), P1().negate()], [P2(), P2()]) should
|
|
/// return true.
|
|
function pairing(
|
|
G1Point[] memory p1,
|
|
G2Point[] memory p2
|
|
) internal view returns (bool) {
|
|
require(p1.length == p2.length, "pairing-lengths-failed");
|
|
uint elements = p1.length;
|
|
uint inputSize = elements * 6;
|
|
uint[] memory input = new uint[](inputSize);
|
|
for (uint i = 0; i < elements; i++) {
|
|
input[i * 6 + 0] = p1[i].x;
|
|
input[i * 6 + 1] = p1[i].y;
|
|
input[i * 6 + 2] = p2[i].x.imag;
|
|
input[i * 6 + 3] = p2[i].x.real;
|
|
input[i * 6 + 4] = p2[i].y.imag;
|
|
input[i * 6 + 5] = p2[i].y.real;
|
|
}
|
|
uint[1] memory out;
|
|
bool success;
|
|
// solhint-disable-next-line no-inline-assembly
|
|
assembly {
|
|
success := staticcall(
|
|
sub(gas(), 2000),
|
|
8,
|
|
add(input, 32),
|
|
mul(inputSize, 32),
|
|
out,
|
|
32
|
|
)
|
|
}
|
|
require(success, "pairing-opcode-failed");
|
|
return out[0] != 0;
|
|
}
|
|
|
|
/// Convenience method for a pairing check for four pairs.
|
|
function pairingProd4(
|
|
G1Point memory a1,
|
|
G2Point memory a2,
|
|
G1Point memory b1,
|
|
G2Point memory b2,
|
|
G1Point memory c1,
|
|
G2Point memory c2,
|
|
G1Point memory d1,
|
|
G2Point memory d2
|
|
) internal view returns (bool) {
|
|
G1Point[] memory p1 = new G1Point[](4);
|
|
G2Point[] memory p2 = new G2Point[](4);
|
|
p1[0] = a1;
|
|
p1[1] = b1;
|
|
p1[2] = c1;
|
|
p1[3] = d1;
|
|
p2[0] = a2;
|
|
p2[1] = b2;
|
|
p2[2] = c2;
|
|
p2[3] = d2;
|
|
return pairing(p1, p2);
|
|
}
|
|
}
|
|
|
|
contract Groth16Verifier {
|
|
using Pairing for *;
|
|
uint256 private constant _SNARK_SCALAR_FIELD =
|
|
21888242871839275222246405745257275088548364400416034343698204186575808495617;
|
|
VerifyingKey private _verifyingKey;
|
|
struct VerifyingKey {
|
|
G1Point alpha1;
|
|
G2Point beta2;
|
|
G2Point gamma2;
|
|
G2Point delta2;
|
|
G1Point[] ic;
|
|
}
|
|
|
|
constructor(VerifyingKey memory key) {
|
|
_verifyingKey.alpha1 = key.alpha1;
|
|
_verifyingKey.beta2 = key.beta2;
|
|
_verifyingKey.gamma2 = key.gamma2;
|
|
_verifyingKey.delta2 = key.delta2;
|
|
for (uint i = 0; i < key.ic.length; i++) {
|
|
_verifyingKey.ic.push(key.ic[i]);
|
|
}
|
|
}
|
|
|
|
function verify(
|
|
Groth16Proof calldata proof,
|
|
uint[] memory input
|
|
) public view returns (bool success) {
|
|
require(input.length + 1 == _verifyingKey.ic.length, "verifier-bad-input");
|
|
// Compute the linear combination vkX
|
|
G1Point memory vkX = G1Point(0, 0);
|
|
for (uint i = 0; i < input.length; i++) {
|
|
require(
|
|
input[i] < _SNARK_SCALAR_FIELD,
|
|
"verifier-gte-snark-scalar-field"
|
|
);
|
|
G1Point memory product;
|
|
(success, product) = Pairing.multiply(_verifyingKey.ic[i + 1], input[i]);
|
|
require(success, "pairing-mul-failed");
|
|
(success, vkX) = Pairing.add(vkX, product);
|
|
require(success, "pairing-add-failed");
|
|
}
|
|
(success, vkX) = Pairing.add(vkX, _verifyingKey.ic[0]);
|
|
require(success, "pairing-add-failed");
|
|
return
|
|
Pairing.pairingProd4(
|
|
Pairing.negate(proof.a),
|
|
proof.b,
|
|
_verifyingKey.alpha1,
|
|
_verifyingKey.beta2,
|
|
vkX,
|
|
_verifyingKey.gamma2,
|
|
proof.c,
|
|
_verifyingKey.delta2
|
|
);
|
|
}
|
|
}
|