Mike Morris 75019baadd
chore: upgrade to gopsutil/v3 (#9118)
* deps: update golang.org/x/sys

* deps: update imports to gopsutil/v3

* chore: make update-vendor
2020-11-06 20:48:38 -05:00

600 lines
16 KiB
C

/*
* Apple System Management Control (SMC) Tool
* Copyright (C) 2006 devnull
* Portions Copyright (C) 2013 Michael Wilber
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <IOKit/IOKitLib.h>
#include "_smc.h"
#include <libkern/OSAtomic.h>
// Cache the keyInfo to lower the energy impact of SMCReadKey() / SMCReadKey2()
#define KEY_INFO_CACHE_SIZE 100
struct {
UInt32 key;
SMCKeyData_keyInfo_t keyInfo;
} g_keyInfoCache[KEY_INFO_CACHE_SIZE];
int g_keyInfoCacheCount = 0;
OSSpinLock g_keyInfoSpinLock = 0;
kern_return_t SMCCall2(int index, SMCKeyData_t *inputStructure, SMCKeyData_t *outputStructure, io_connect_t conn);
UInt32 _strtoul(char *str, int size, int base)
{
UInt32 total = 0;
int i;
for (i = 0; i < size; i++)
{
if (base == 16)
total += str[i] << (size - 1 - i) * 8;
else
total += ((unsigned char) (str[i]) << (size - 1 - i) * 8);
}
return total;
}
void _ultostr(char *str, UInt32 val)
{
str[0] = '\0';
sprintf(str, "%c%c%c%c",
(unsigned int) val >> 24,
(unsigned int) val >> 16,
(unsigned int) val >> 8,
(unsigned int) val);
}
float _strtof(unsigned char *str, int size, int e)
{
float total = 0;
int i;
for (i = 0; i < size; i++)
{
if (i == (size - 1))
total += (str[i] & 0xff) >> e;
else
total += str[i] << (size - 1 - i) * (8 - e);
}
total += (str[size-1] & 0x03) * 0.25;
return total;
}
void printFP1F(SMCVal_t val)
{
printf("%.5f ", ntohs(*(UInt16*)val.bytes) / 32768.0);
}
void printFP4C(SMCVal_t val)
{
printf("%.5f ", ntohs(*(UInt16*)val.bytes) / 4096.0);
}
void printFP5B(SMCVal_t val)
{
printf("%.5f ", ntohs(*(UInt16*)val.bytes) / 2048.0);
}
void printFP6A(SMCVal_t val)
{
printf("%.4f ", ntohs(*(UInt16*)val.bytes) / 1024.0);
}
void printFP79(SMCVal_t val)
{
printf("%.4f ", ntohs(*(UInt16*)val.bytes) / 512.0);
}
void printFP88(SMCVal_t val)
{
printf("%.3f ", ntohs(*(UInt16*)val.bytes) / 256.0);
}
void printFPA6(SMCVal_t val)
{
printf("%.2f ", ntohs(*(UInt16*)val.bytes) / 64.0);
}
void printFPC4(SMCVal_t val)
{
printf("%.2f ", ntohs(*(UInt16*)val.bytes) / 16.0);
}
void printFPE2(SMCVal_t val)
{
printf("%.2f ", ntohs(*(UInt16*)val.bytes) / 4.0);
}
void printUInt(SMCVal_t val)
{
printf("%u ", (unsigned int) _strtoul((char *)val.bytes, val.dataSize, 10));
}
void printSP1E(SMCVal_t val)
{
printf("%.5f ", ((SInt16)ntohs(*(UInt16*)val.bytes)) / 16384.0);
}
void printSP3C(SMCVal_t val)
{
printf("%.5f ", ((SInt16)ntohs(*(UInt16*)val.bytes)) / 4096.0);
}
void printSP4B(SMCVal_t val)
{
printf("%.4f ", ((SInt16)ntohs(*(UInt16*)val.bytes)) / 2048.0);
}
void printSP5A(SMCVal_t val)
{
printf("%.4f ", ((SInt16)ntohs(*(UInt16*)val.bytes)) / 1024.0);
}
void printSP69(SMCVal_t val)
{
printf("%.3f ", ((SInt16)ntohs(*(UInt16*)val.bytes)) / 512.0);
}
void printSP78(SMCVal_t val)
{
printf("%.3f ", ((SInt16)ntohs(*(UInt16*)val.bytes)) / 256.0);
}
void printSP87(SMCVal_t val)
{
printf("%.3f ", ((SInt16)ntohs(*(UInt16*)val.bytes)) / 128.0);
}
void printSP96(SMCVal_t val)
{
printf("%.2f ", ((SInt16)ntohs(*(UInt16*)val.bytes)) / 64.0);
}
void printSPB4(SMCVal_t val)
{
printf("%.2f ", ((SInt16)ntohs(*(UInt16*)val.bytes)) / 16.0);
}
void printSPF0(SMCVal_t val)
{
printf("%.0f ", (float)ntohs(*(UInt16*)val.bytes));
}
void printSI8(SMCVal_t val)
{
printf("%d ", (signed char)*val.bytes);
}
void printSI16(SMCVal_t val)
{
printf("%d ", ntohs(*(SInt16*)val.bytes));
}
void printPWM(SMCVal_t val)
{
printf("%.1f%% ", ntohs(*(UInt16*)val.bytes) * 100 / 65536.0);
}
void printBytesHex(SMCVal_t val)
{
int i;
printf("(bytes");
for (i = 0; i < val.dataSize; i++)
printf(" %02x", (unsigned char) val.bytes[i]);
printf(")\n");
}
void printVal(SMCVal_t val)
{
printf(" %-4s [%-4s] ", val.key, val.dataType);
if (val.dataSize > 0)
{
if ((strcmp(val.dataType, DATATYPE_UINT8) == 0) ||
(strcmp(val.dataType, DATATYPE_UINT16) == 0) ||
(strcmp(val.dataType, DATATYPE_UINT32) == 0))
printUInt(val);
else if (strcmp(val.dataType, DATATYPE_FP1F) == 0 && val.dataSize == 2)
printFP1F(val);
else if (strcmp(val.dataType, DATATYPE_FP4C) == 0 && val.dataSize == 2)
printFP4C(val);
else if (strcmp(val.dataType, DATATYPE_FP5B) == 0 && val.dataSize == 2)
printFP5B(val);
else if (strcmp(val.dataType, DATATYPE_FP6A) == 0 && val.dataSize == 2)
printFP6A(val);
else if (strcmp(val.dataType, DATATYPE_FP79) == 0 && val.dataSize == 2)
printFP79(val);
else if (strcmp(val.dataType, DATATYPE_FP88) == 0 && val.dataSize == 2)
printFP88(val);
else if (strcmp(val.dataType, DATATYPE_FPA6) == 0 && val.dataSize == 2)
printFPA6(val);
else if (strcmp(val.dataType, DATATYPE_FPC4) == 0 && val.dataSize == 2)
printFPC4(val);
else if (strcmp(val.dataType, DATATYPE_FPE2) == 0 && val.dataSize == 2)
printFPE2(val);
else if (strcmp(val.dataType, DATATYPE_SP1E) == 0 && val.dataSize == 2)
printSP1E(val);
else if (strcmp(val.dataType, DATATYPE_SP3C) == 0 && val.dataSize == 2)
printSP3C(val);
else if (strcmp(val.dataType, DATATYPE_SP4B) == 0 && val.dataSize == 2)
printSP4B(val);
else if (strcmp(val.dataType, DATATYPE_SP5A) == 0 && val.dataSize == 2)
printSP5A(val);
else if (strcmp(val.dataType, DATATYPE_SP69) == 0 && val.dataSize == 2)
printSP69(val);
else if (strcmp(val.dataType, DATATYPE_SP78) == 0 && val.dataSize == 2)
printSP78(val);
else if (strcmp(val.dataType, DATATYPE_SP87) == 0 && val.dataSize == 2)
printSP87(val);
else if (strcmp(val.dataType, DATATYPE_SP96) == 0 && val.dataSize == 2)
printSP96(val);
else if (strcmp(val.dataType, DATATYPE_SPB4) == 0 && val.dataSize == 2)
printSPB4(val);
else if (strcmp(val.dataType, DATATYPE_SPF0) == 0 && val.dataSize == 2)
printSPF0(val);
else if (strcmp(val.dataType, DATATYPE_SI8) == 0 && val.dataSize == 1)
printSI8(val);
else if (strcmp(val.dataType, DATATYPE_SI16) == 0 && val.dataSize == 2)
printSI16(val);
else if (strcmp(val.dataType, DATATYPE_PWM) == 0 && val.dataSize == 2)
printPWM(val);
printBytesHex(val);
}
else
{
printf("no data\n");
}
}
kern_return_t SMCOpen(io_connect_t *conn)
{
kern_return_t result;
mach_port_t masterPort;
io_iterator_t iterator;
io_object_t device;
IOMasterPort(MACH_PORT_NULL, &masterPort);
CFMutableDictionaryRef matchingDictionary = IOServiceMatching("AppleSMC");
result = IOServiceGetMatchingServices(masterPort, matchingDictionary, &iterator);
if (result != kIOReturnSuccess)
{
printf("Error: IOServiceGetMatchingServices() = %08x\n", result);
return 1;
}
device = IOIteratorNext(iterator);
IOObjectRelease(iterator);
if (device == 0)
{
printf("Error: no SMC found\n");
return 1;
}
result = IOServiceOpen(device, mach_task_self(), 0, conn);
IOObjectRelease(device);
if (result != kIOReturnSuccess)
{
printf("Error: IOServiceOpen() = %08x\n", result);
return 1;
}
return kIOReturnSuccess;
}
kern_return_t SMCClose(io_connect_t conn)
{
return IOServiceClose(conn);
}
kern_return_t SMCCall2(int index, SMCKeyData_t *inputStructure, SMCKeyData_t *outputStructure,io_connect_t conn)
{
size_t structureInputSize;
size_t structureOutputSize;
structureInputSize = sizeof(SMCKeyData_t);
structureOutputSize = sizeof(SMCKeyData_t);
return IOConnectCallStructMethod(conn, index, inputStructure, structureInputSize, outputStructure, &structureOutputSize);
}
// Provides key info, using a cache to dramatically improve the energy impact of smcFanControl
kern_return_t SMCGetKeyInfo(UInt32 key, SMCKeyData_keyInfo_t* keyInfo, io_connect_t conn)
{
SMCKeyData_t inputStructure;
SMCKeyData_t outputStructure;
kern_return_t result = kIOReturnSuccess;
int i = 0;
OSSpinLockLock(&g_keyInfoSpinLock);
for (; i < g_keyInfoCacheCount; ++i)
{
if (key == g_keyInfoCache[i].key)
{
*keyInfo = g_keyInfoCache[i].keyInfo;
break;
}
}
if (i == g_keyInfoCacheCount)
{
// Not in cache, must look it up.
memset(&inputStructure, 0, sizeof(inputStructure));
memset(&outputStructure, 0, sizeof(outputStructure));
inputStructure.key = key;
inputStructure.data8 = SMC_CMD_READ_KEYINFO;
result = SMCCall2(KERNEL_INDEX_SMC, &inputStructure, &outputStructure, conn);
if (result == kIOReturnSuccess)
{
*keyInfo = outputStructure.keyInfo;
if (g_keyInfoCacheCount < KEY_INFO_CACHE_SIZE)
{
g_keyInfoCache[g_keyInfoCacheCount].key = key;
g_keyInfoCache[g_keyInfoCacheCount].keyInfo = outputStructure.keyInfo;
++g_keyInfoCacheCount;
}
}
}
OSSpinLockUnlock(&g_keyInfoSpinLock);
return result;
}
kern_return_t SMCReadKey2(UInt32Char_t key, SMCVal_t *val,io_connect_t conn)
{
kern_return_t result;
SMCKeyData_t inputStructure;
SMCKeyData_t outputStructure;
memset(&inputStructure, 0, sizeof(SMCKeyData_t));
memset(&outputStructure, 0, sizeof(SMCKeyData_t));
memset(val, 0, sizeof(SMCVal_t));
inputStructure.key = _strtoul(key, 4, 16);
sprintf(val->key, key);
result = SMCGetKeyInfo(inputStructure.key, &outputStructure.keyInfo, conn);
if (result != kIOReturnSuccess)
{
return result;
}
val->dataSize = outputStructure.keyInfo.dataSize;
_ultostr(val->dataType, outputStructure.keyInfo.dataType);
inputStructure.keyInfo.dataSize = val->dataSize;
inputStructure.data8 = SMC_CMD_READ_BYTES;
result = SMCCall2(KERNEL_INDEX_SMC, &inputStructure, &outputStructure,conn);
if (result != kIOReturnSuccess)
{
return result;
}
memcpy(val->bytes, outputStructure.bytes, sizeof(outputStructure.bytes));
return kIOReturnSuccess;
}
io_connect_t g_conn = 0;
void smc_init(){
SMCOpen(&g_conn);
}
void smc_close(){
SMCClose(g_conn);
}
kern_return_t SMCCall(int index, SMCKeyData_t *inputStructure, SMCKeyData_t *outputStructure)
{
return SMCCall2(index, inputStructure, outputStructure, g_conn);
}
kern_return_t SMCReadKey(UInt32Char_t key, SMCVal_t *val)
{
return SMCReadKey2(key, val, g_conn);
}
kern_return_t SMCWriteKey2(SMCVal_t writeVal, io_connect_t conn)
{
kern_return_t result;
SMCKeyData_t inputStructure;
SMCKeyData_t outputStructure;
SMCVal_t readVal;
result = SMCReadKey2(writeVal.key, &readVal,conn);
if (result != kIOReturnSuccess)
return result;
if (readVal.dataSize != writeVal.dataSize)
return kIOReturnError;
memset(&inputStructure, 0, sizeof(SMCKeyData_t));
memset(&outputStructure, 0, sizeof(SMCKeyData_t));
inputStructure.key = _strtoul(writeVal.key, 4, 16);
inputStructure.data8 = SMC_CMD_WRITE_BYTES;
inputStructure.keyInfo.dataSize = writeVal.dataSize;
memcpy(inputStructure.bytes, writeVal.bytes, sizeof(writeVal.bytes));
result = SMCCall2(KERNEL_INDEX_SMC, &inputStructure, &outputStructure,conn);
if (result != kIOReturnSuccess)
return result;
return kIOReturnSuccess;
}
kern_return_t SMCWriteKey(SMCVal_t writeVal)
{
return SMCWriteKey2(writeVal, g_conn);
}
UInt32 SMCReadIndexCount(void)
{
SMCVal_t val;
SMCReadKey("#KEY", &val);
return _strtoul((char *)val.bytes, val.dataSize, 10);
}
kern_return_t SMCPrintAll(void)
{
kern_return_t result;
SMCKeyData_t inputStructure;
SMCKeyData_t outputStructure;
int totalKeys, i;
UInt32Char_t key;
SMCVal_t val;
totalKeys = SMCReadIndexCount();
for (i = 0; i < totalKeys; i++)
{
memset(&inputStructure, 0, sizeof(SMCKeyData_t));
memset(&outputStructure, 0, sizeof(SMCKeyData_t));
memset(&val, 0, sizeof(SMCVal_t));
inputStructure.data8 = SMC_CMD_READ_INDEX;
inputStructure.data32 = i;
result = SMCCall(KERNEL_INDEX_SMC, &inputStructure, &outputStructure);
if (result != kIOReturnSuccess)
continue;
_ultostr(key, outputStructure.key);
SMCReadKey(key, &val);
printVal(val);
}
return kIOReturnSuccess;
}
kern_return_t SMCPrintFans(void)
{
kern_return_t result;
SMCVal_t val;
UInt32Char_t key;
int totalFans, i;
result = SMCReadKey("FNum", &val);
if (result != kIOReturnSuccess)
return kIOReturnError;
totalFans = _strtoul((char *)val.bytes, val.dataSize, 10);
printf("Total fans in system: %d\n", totalFans);
for (i = 0; i < totalFans; i++)
{
printf("\nFan #%d:\n", i);
sprintf(key, "F%dID", i);
SMCReadKey(key, &val);
printf(" Fan ID : %s\n", val.bytes+4);
sprintf(key, "F%dAc", i);
SMCReadKey(key, &val);
printf(" Actual speed : %.0f\n", _strtof(val.bytes, val.dataSize, 2));
sprintf(key, "F%dMn", i);
SMCReadKey(key, &val);
printf(" Minimum speed: %.0f\n", _strtof(val.bytes, val.dataSize, 2));
sprintf(key, "F%dMx", i);
SMCReadKey(key, &val);
printf(" Maximum speed: %.0f\n", _strtof(val.bytes, val.dataSize, 2));
sprintf(key, "F%dSf", i);
SMCReadKey(key, &val);
printf(" Safe speed : %.0f\n", _strtof(val.bytes, val.dataSize, 2));
sprintf(key, "F%dTg", i);
SMCReadKey(key, &val);
printf(" Target speed : %.0f\n", _strtof(val.bytes, val.dataSize, 2));
SMCReadKey("FS! ", &val);
if ((_strtoul((char *)val.bytes, 2, 16) & (1 << i)) == 0)
printf(" Mode : auto\n");
else
printf(" Mode : forced\n");
}
return kIOReturnSuccess;
}
void usage(char* prog)
{
printf("Apple System Management Control (SMC) tool %s\n", VERSION);
printf("Usage:\n");
printf("%s [options]\n", prog);
printf(" -f : fan info decoded\n");
printf(" -h : help\n");
printf(" -k <key> : key to manipulate\n");
printf(" -l : list all keys and values\n");
printf(" -r : read the value of a key\n");
printf(" -w <value> : write the specified value to a key\n");
printf(" -v : version\n");
printf("\n");
}
kern_return_t SMCWriteSimple(UInt32Char_t key, char *wvalue, io_connect_t conn)
{
kern_return_t result;
SMCVal_t val;
int i;
char c[3];
for (i = 0; i < strlen(wvalue); i++)
{
sprintf(c, "%c%c", wvalue[i * 2], wvalue[(i * 2) + 1]);
val.bytes[i] = (int) strtol(c, NULL, 16);
}
val.dataSize = i / 2;
sprintf(val.key, key);
result = SMCWriteKey2(val, conn);
if (result != kIOReturnSuccess)
printf("Error: SMCWriteKey() = %08x\n", result);
return result;
}
double SMCGetTemperature(char *key)
{
SMCVal_t val;
kern_return_t result;
result = SMCReadKey(key, &val);
if (result == kIOReturnSuccess) {
// read succeeded - check returned value
if (val.dataSize > 0) {
if (strcmp(val.dataType, DATATYPE_SP78) == 0) {
// convert sp78 value to temperature
int intValue = val.bytes[0] * 256 + (unsigned char)val.bytes[1];
return intValue / 256.0;
}
}
}
// read failed
return 0.0;
}