mirror of
https://github.com/status-im/consul.git
synced 2025-01-19 10:15:06 +00:00
e9835610f3
This is in its own separate package so that it will be a separate test binary that runs thus isolating the go runtime from other tests and allowing accurate go routine leak checking. This test would ideally use goleak.VerifyTestMain but that will fail 100% of the time due to some architectural things (blocking queries and net/rpc uncancellability). This test is not comprehensive. We should enable/exercise more features and more cluster configurations. However its a start.
526 lines
15 KiB
Go
526 lines
15 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package timeseries implements a time series structure for stats collection.
|
|
package timeseries // import "golang.org/x/net/internal/timeseries"
|
|
|
|
import (
|
|
"fmt"
|
|
"log"
|
|
"time"
|
|
)
|
|
|
|
const (
|
|
timeSeriesNumBuckets = 64
|
|
minuteHourSeriesNumBuckets = 60
|
|
)
|
|
|
|
var timeSeriesResolutions = []time.Duration{
|
|
1 * time.Second,
|
|
10 * time.Second,
|
|
1 * time.Minute,
|
|
10 * time.Minute,
|
|
1 * time.Hour,
|
|
6 * time.Hour,
|
|
24 * time.Hour, // 1 day
|
|
7 * 24 * time.Hour, // 1 week
|
|
4 * 7 * 24 * time.Hour, // 4 weeks
|
|
16 * 7 * 24 * time.Hour, // 16 weeks
|
|
}
|
|
|
|
var minuteHourSeriesResolutions = []time.Duration{
|
|
1 * time.Second,
|
|
1 * time.Minute,
|
|
}
|
|
|
|
// An Observable is a kind of data that can be aggregated in a time series.
|
|
type Observable interface {
|
|
Multiply(ratio float64) // Multiplies the data in self by a given ratio
|
|
Add(other Observable) // Adds the data from a different observation to self
|
|
Clear() // Clears the observation so it can be reused.
|
|
CopyFrom(other Observable) // Copies the contents of a given observation to self
|
|
}
|
|
|
|
// Float attaches the methods of Observable to a float64.
|
|
type Float float64
|
|
|
|
// NewFloat returns a Float.
|
|
func NewFloat() Observable {
|
|
f := Float(0)
|
|
return &f
|
|
}
|
|
|
|
// String returns the float as a string.
|
|
func (f *Float) String() string { return fmt.Sprintf("%g", f.Value()) }
|
|
|
|
// Value returns the float's value.
|
|
func (f *Float) Value() float64 { return float64(*f) }
|
|
|
|
func (f *Float) Multiply(ratio float64) { *f *= Float(ratio) }
|
|
|
|
func (f *Float) Add(other Observable) {
|
|
o := other.(*Float)
|
|
*f += *o
|
|
}
|
|
|
|
func (f *Float) Clear() { *f = 0 }
|
|
|
|
func (f *Float) CopyFrom(other Observable) {
|
|
o := other.(*Float)
|
|
*f = *o
|
|
}
|
|
|
|
// A Clock tells the current time.
|
|
type Clock interface {
|
|
Time() time.Time
|
|
}
|
|
|
|
type defaultClock int
|
|
|
|
var defaultClockInstance defaultClock
|
|
|
|
func (defaultClock) Time() time.Time { return time.Now() }
|
|
|
|
// Information kept per level. Each level consists of a circular list of
|
|
// observations. The start of the level may be derived from end and the
|
|
// len(buckets) * sizeInMillis.
|
|
type tsLevel struct {
|
|
oldest int // index to oldest bucketed Observable
|
|
newest int // index to newest bucketed Observable
|
|
end time.Time // end timestamp for this level
|
|
size time.Duration // duration of the bucketed Observable
|
|
buckets []Observable // collections of observations
|
|
provider func() Observable // used for creating new Observable
|
|
}
|
|
|
|
func (l *tsLevel) Clear() {
|
|
l.oldest = 0
|
|
l.newest = len(l.buckets) - 1
|
|
l.end = time.Time{}
|
|
for i := range l.buckets {
|
|
if l.buckets[i] != nil {
|
|
l.buckets[i].Clear()
|
|
l.buckets[i] = nil
|
|
}
|
|
}
|
|
}
|
|
|
|
func (l *tsLevel) InitLevel(size time.Duration, numBuckets int, f func() Observable) {
|
|
l.size = size
|
|
l.provider = f
|
|
l.buckets = make([]Observable, numBuckets)
|
|
}
|
|
|
|
// Keeps a sequence of levels. Each level is responsible for storing data at
|
|
// a given resolution. For example, the first level stores data at a one
|
|
// minute resolution while the second level stores data at a one hour
|
|
// resolution.
|
|
|
|
// Each level is represented by a sequence of buckets. Each bucket spans an
|
|
// interval equal to the resolution of the level. New observations are added
|
|
// to the last bucket.
|
|
type timeSeries struct {
|
|
provider func() Observable // make more Observable
|
|
numBuckets int // number of buckets in each level
|
|
levels []*tsLevel // levels of bucketed Observable
|
|
lastAdd time.Time // time of last Observable tracked
|
|
total Observable // convenient aggregation of all Observable
|
|
clock Clock // Clock for getting current time
|
|
pending Observable // observations not yet bucketed
|
|
pendingTime time.Time // what time are we keeping in pending
|
|
dirty bool // if there are pending observations
|
|
}
|
|
|
|
// init initializes a level according to the supplied criteria.
|
|
func (ts *timeSeries) init(resolutions []time.Duration, f func() Observable, numBuckets int, clock Clock) {
|
|
ts.provider = f
|
|
ts.numBuckets = numBuckets
|
|
ts.clock = clock
|
|
ts.levels = make([]*tsLevel, len(resolutions))
|
|
|
|
for i := range resolutions {
|
|
if i > 0 && resolutions[i-1] >= resolutions[i] {
|
|
log.Print("timeseries: resolutions must be monotonically increasing")
|
|
break
|
|
}
|
|
newLevel := new(tsLevel)
|
|
newLevel.InitLevel(resolutions[i], ts.numBuckets, ts.provider)
|
|
ts.levels[i] = newLevel
|
|
}
|
|
|
|
ts.Clear()
|
|
}
|
|
|
|
// Clear removes all observations from the time series.
|
|
func (ts *timeSeries) Clear() {
|
|
ts.lastAdd = time.Time{}
|
|
ts.total = ts.resetObservation(ts.total)
|
|
ts.pending = ts.resetObservation(ts.pending)
|
|
ts.pendingTime = time.Time{}
|
|
ts.dirty = false
|
|
|
|
for i := range ts.levels {
|
|
ts.levels[i].Clear()
|
|
}
|
|
}
|
|
|
|
// Add records an observation at the current time.
|
|
func (ts *timeSeries) Add(observation Observable) {
|
|
ts.AddWithTime(observation, ts.clock.Time())
|
|
}
|
|
|
|
// AddWithTime records an observation at the specified time.
|
|
func (ts *timeSeries) AddWithTime(observation Observable, t time.Time) {
|
|
|
|
smallBucketDuration := ts.levels[0].size
|
|
|
|
if t.After(ts.lastAdd) {
|
|
ts.lastAdd = t
|
|
}
|
|
|
|
if t.After(ts.pendingTime) {
|
|
ts.advance(t)
|
|
ts.mergePendingUpdates()
|
|
ts.pendingTime = ts.levels[0].end
|
|
ts.pending.CopyFrom(observation)
|
|
ts.dirty = true
|
|
} else if t.After(ts.pendingTime.Add(-1 * smallBucketDuration)) {
|
|
// The observation is close enough to go into the pending bucket.
|
|
// This compensates for clock skewing and small scheduling delays
|
|
// by letting the update stay in the fast path.
|
|
ts.pending.Add(observation)
|
|
ts.dirty = true
|
|
} else {
|
|
ts.mergeValue(observation, t)
|
|
}
|
|
}
|
|
|
|
// mergeValue inserts the observation at the specified time in the past into all levels.
|
|
func (ts *timeSeries) mergeValue(observation Observable, t time.Time) {
|
|
for _, level := range ts.levels {
|
|
index := (ts.numBuckets - 1) - int(level.end.Sub(t)/level.size)
|
|
if 0 <= index && index < ts.numBuckets {
|
|
bucketNumber := (level.oldest + index) % ts.numBuckets
|
|
if level.buckets[bucketNumber] == nil {
|
|
level.buckets[bucketNumber] = level.provider()
|
|
}
|
|
level.buckets[bucketNumber].Add(observation)
|
|
}
|
|
}
|
|
ts.total.Add(observation)
|
|
}
|
|
|
|
// mergePendingUpdates applies the pending updates into all levels.
|
|
func (ts *timeSeries) mergePendingUpdates() {
|
|
if ts.dirty {
|
|
ts.mergeValue(ts.pending, ts.pendingTime)
|
|
ts.pending = ts.resetObservation(ts.pending)
|
|
ts.dirty = false
|
|
}
|
|
}
|
|
|
|
// advance cycles the buckets at each level until the latest bucket in
|
|
// each level can hold the time specified.
|
|
func (ts *timeSeries) advance(t time.Time) {
|
|
if !t.After(ts.levels[0].end) {
|
|
return
|
|
}
|
|
for i := 0; i < len(ts.levels); i++ {
|
|
level := ts.levels[i]
|
|
if !level.end.Before(t) {
|
|
break
|
|
}
|
|
|
|
// If the time is sufficiently far, just clear the level and advance
|
|
// directly.
|
|
if !t.Before(level.end.Add(level.size * time.Duration(ts.numBuckets))) {
|
|
for _, b := range level.buckets {
|
|
ts.resetObservation(b)
|
|
}
|
|
level.end = time.Unix(0, (t.UnixNano()/level.size.Nanoseconds())*level.size.Nanoseconds())
|
|
}
|
|
|
|
for t.After(level.end) {
|
|
level.end = level.end.Add(level.size)
|
|
level.newest = level.oldest
|
|
level.oldest = (level.oldest + 1) % ts.numBuckets
|
|
ts.resetObservation(level.buckets[level.newest])
|
|
}
|
|
|
|
t = level.end
|
|
}
|
|
}
|
|
|
|
// Latest returns the sum of the num latest buckets from the level.
|
|
func (ts *timeSeries) Latest(level, num int) Observable {
|
|
now := ts.clock.Time()
|
|
if ts.levels[0].end.Before(now) {
|
|
ts.advance(now)
|
|
}
|
|
|
|
ts.mergePendingUpdates()
|
|
|
|
result := ts.provider()
|
|
l := ts.levels[level]
|
|
index := l.newest
|
|
|
|
for i := 0; i < num; i++ {
|
|
if l.buckets[index] != nil {
|
|
result.Add(l.buckets[index])
|
|
}
|
|
if index == 0 {
|
|
index = ts.numBuckets
|
|
}
|
|
index--
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// LatestBuckets returns a copy of the num latest buckets from level.
|
|
func (ts *timeSeries) LatestBuckets(level, num int) []Observable {
|
|
if level < 0 || level > len(ts.levels) {
|
|
log.Print("timeseries: bad level argument: ", level)
|
|
return nil
|
|
}
|
|
if num < 0 || num >= ts.numBuckets {
|
|
log.Print("timeseries: bad num argument: ", num)
|
|
return nil
|
|
}
|
|
|
|
results := make([]Observable, num)
|
|
now := ts.clock.Time()
|
|
if ts.levels[0].end.Before(now) {
|
|
ts.advance(now)
|
|
}
|
|
|
|
ts.mergePendingUpdates()
|
|
|
|
l := ts.levels[level]
|
|
index := l.newest
|
|
|
|
for i := 0; i < num; i++ {
|
|
result := ts.provider()
|
|
results[i] = result
|
|
if l.buckets[index] != nil {
|
|
result.CopyFrom(l.buckets[index])
|
|
}
|
|
|
|
if index == 0 {
|
|
index = ts.numBuckets
|
|
}
|
|
index -= 1
|
|
}
|
|
return results
|
|
}
|
|
|
|
// ScaleBy updates observations by scaling by factor.
|
|
func (ts *timeSeries) ScaleBy(factor float64) {
|
|
for _, l := range ts.levels {
|
|
for i := 0; i < ts.numBuckets; i++ {
|
|
l.buckets[i].Multiply(factor)
|
|
}
|
|
}
|
|
|
|
ts.total.Multiply(factor)
|
|
ts.pending.Multiply(factor)
|
|
}
|
|
|
|
// Range returns the sum of observations added over the specified time range.
|
|
// If start or finish times don't fall on bucket boundaries of the same
|
|
// level, then return values are approximate answers.
|
|
func (ts *timeSeries) Range(start, finish time.Time) Observable {
|
|
return ts.ComputeRange(start, finish, 1)[0]
|
|
}
|
|
|
|
// Recent returns the sum of observations from the last delta.
|
|
func (ts *timeSeries) Recent(delta time.Duration) Observable {
|
|
now := ts.clock.Time()
|
|
return ts.Range(now.Add(-delta), now)
|
|
}
|
|
|
|
// Total returns the total of all observations.
|
|
func (ts *timeSeries) Total() Observable {
|
|
ts.mergePendingUpdates()
|
|
return ts.total
|
|
}
|
|
|
|
// ComputeRange computes a specified number of values into a slice using
|
|
// the observations recorded over the specified time period. The return
|
|
// values are approximate if the start or finish times don't fall on the
|
|
// bucket boundaries at the same level or if the number of buckets spanning
|
|
// the range is not an integral multiple of num.
|
|
func (ts *timeSeries) ComputeRange(start, finish time.Time, num int) []Observable {
|
|
if start.After(finish) {
|
|
log.Printf("timeseries: start > finish, %v>%v", start, finish)
|
|
return nil
|
|
}
|
|
|
|
if num < 0 {
|
|
log.Printf("timeseries: num < 0, %v", num)
|
|
return nil
|
|
}
|
|
|
|
results := make([]Observable, num)
|
|
|
|
for _, l := range ts.levels {
|
|
if !start.Before(l.end.Add(-l.size * time.Duration(ts.numBuckets))) {
|
|
ts.extract(l, start, finish, num, results)
|
|
return results
|
|
}
|
|
}
|
|
|
|
// Failed to find a level that covers the desired range. So just
|
|
// extract from the last level, even if it doesn't cover the entire
|
|
// desired range.
|
|
ts.extract(ts.levels[len(ts.levels)-1], start, finish, num, results)
|
|
|
|
return results
|
|
}
|
|
|
|
// RecentList returns the specified number of values in slice over the most
|
|
// recent time period of the specified range.
|
|
func (ts *timeSeries) RecentList(delta time.Duration, num int) []Observable {
|
|
if delta < 0 {
|
|
return nil
|
|
}
|
|
now := ts.clock.Time()
|
|
return ts.ComputeRange(now.Add(-delta), now, num)
|
|
}
|
|
|
|
// extract returns a slice of specified number of observations from a given
|
|
// level over a given range.
|
|
func (ts *timeSeries) extract(l *tsLevel, start, finish time.Time, num int, results []Observable) {
|
|
ts.mergePendingUpdates()
|
|
|
|
srcInterval := l.size
|
|
dstInterval := finish.Sub(start) / time.Duration(num)
|
|
dstStart := start
|
|
srcStart := l.end.Add(-srcInterval * time.Duration(ts.numBuckets))
|
|
|
|
srcIndex := 0
|
|
|
|
// Where should scanning start?
|
|
if dstStart.After(srcStart) {
|
|
advance := int(dstStart.Sub(srcStart) / srcInterval)
|
|
srcIndex += advance
|
|
srcStart = srcStart.Add(time.Duration(advance) * srcInterval)
|
|
}
|
|
|
|
// The i'th value is computed as show below.
|
|
// interval = (finish/start)/num
|
|
// i'th value = sum of observation in range
|
|
// [ start + i * interval,
|
|
// start + (i + 1) * interval )
|
|
for i := 0; i < num; i++ {
|
|
results[i] = ts.resetObservation(results[i])
|
|
dstEnd := dstStart.Add(dstInterval)
|
|
for srcIndex < ts.numBuckets && srcStart.Before(dstEnd) {
|
|
srcEnd := srcStart.Add(srcInterval)
|
|
if srcEnd.After(ts.lastAdd) {
|
|
srcEnd = ts.lastAdd
|
|
}
|
|
|
|
if !srcEnd.Before(dstStart) {
|
|
srcValue := l.buckets[(srcIndex+l.oldest)%ts.numBuckets]
|
|
if !srcStart.Before(dstStart) && !srcEnd.After(dstEnd) {
|
|
// dst completely contains src.
|
|
if srcValue != nil {
|
|
results[i].Add(srcValue)
|
|
}
|
|
} else {
|
|
// dst partially overlaps src.
|
|
overlapStart := maxTime(srcStart, dstStart)
|
|
overlapEnd := minTime(srcEnd, dstEnd)
|
|
base := srcEnd.Sub(srcStart)
|
|
fraction := overlapEnd.Sub(overlapStart).Seconds() / base.Seconds()
|
|
|
|
used := ts.provider()
|
|
if srcValue != nil {
|
|
used.CopyFrom(srcValue)
|
|
}
|
|
used.Multiply(fraction)
|
|
results[i].Add(used)
|
|
}
|
|
|
|
if srcEnd.After(dstEnd) {
|
|
break
|
|
}
|
|
}
|
|
srcIndex++
|
|
srcStart = srcStart.Add(srcInterval)
|
|
}
|
|
dstStart = dstStart.Add(dstInterval)
|
|
}
|
|
}
|
|
|
|
// resetObservation clears the content so the struct may be reused.
|
|
func (ts *timeSeries) resetObservation(observation Observable) Observable {
|
|
if observation == nil {
|
|
observation = ts.provider()
|
|
} else {
|
|
observation.Clear()
|
|
}
|
|
return observation
|
|
}
|
|
|
|
// TimeSeries tracks data at granularities from 1 second to 16 weeks.
|
|
type TimeSeries struct {
|
|
timeSeries
|
|
}
|
|
|
|
// NewTimeSeries creates a new TimeSeries using the function provided for creating new Observable.
|
|
func NewTimeSeries(f func() Observable) *TimeSeries {
|
|
return NewTimeSeriesWithClock(f, defaultClockInstance)
|
|
}
|
|
|
|
// NewTimeSeriesWithClock creates a new TimeSeries using the function provided for creating new Observable and the clock for
|
|
// assigning timestamps.
|
|
func NewTimeSeriesWithClock(f func() Observable, clock Clock) *TimeSeries {
|
|
ts := new(TimeSeries)
|
|
ts.timeSeries.init(timeSeriesResolutions, f, timeSeriesNumBuckets, clock)
|
|
return ts
|
|
}
|
|
|
|
// MinuteHourSeries tracks data at granularities of 1 minute and 1 hour.
|
|
type MinuteHourSeries struct {
|
|
timeSeries
|
|
}
|
|
|
|
// NewMinuteHourSeries creates a new MinuteHourSeries using the function provided for creating new Observable.
|
|
func NewMinuteHourSeries(f func() Observable) *MinuteHourSeries {
|
|
return NewMinuteHourSeriesWithClock(f, defaultClockInstance)
|
|
}
|
|
|
|
// NewMinuteHourSeriesWithClock creates a new MinuteHourSeries using the function provided for creating new Observable and the clock for
|
|
// assigning timestamps.
|
|
func NewMinuteHourSeriesWithClock(f func() Observable, clock Clock) *MinuteHourSeries {
|
|
ts := new(MinuteHourSeries)
|
|
ts.timeSeries.init(minuteHourSeriesResolutions, f,
|
|
minuteHourSeriesNumBuckets, clock)
|
|
return ts
|
|
}
|
|
|
|
func (ts *MinuteHourSeries) Minute() Observable {
|
|
return ts.timeSeries.Latest(0, 60)
|
|
}
|
|
|
|
func (ts *MinuteHourSeries) Hour() Observable {
|
|
return ts.timeSeries.Latest(1, 60)
|
|
}
|
|
|
|
func minTime(a, b time.Time) time.Time {
|
|
if a.Before(b) {
|
|
return a
|
|
}
|
|
return b
|
|
}
|
|
|
|
func maxTime(a, b time.Time) time.Time {
|
|
if a.After(b) {
|
|
return a
|
|
}
|
|
return b
|
|
}
|