consul/agent/consul/rpc_test.go
Daniel Nephin 2b5b54bd37 Merge pull request #10075 from hashicorp/dnephin/handle-raft-apply-errors
rpc: some cleanup of canRetry and ForwardRPC
2021-05-06 21:00:35 +00:00

1014 lines
28 KiB
Go

package consul
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"net"
"os"
"strings"
"sync"
"testing"
"time"
"github.com/hashicorp/go-memdb"
msgpackrpc "github.com/hashicorp/net-rpc-msgpackrpc"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/hashicorp/consul/acl"
"github.com/hashicorp/consul/agent/consul/state"
"github.com/hashicorp/consul/agent/pool"
"github.com/hashicorp/consul/agent/structs"
tokenStore "github.com/hashicorp/consul/agent/token"
"github.com/hashicorp/consul/api"
"github.com/hashicorp/consul/sdk/testutil/retry"
"github.com/hashicorp/consul/testrpc"
)
func TestRPC_NoLeader_Fail(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.RPCHoldTimeout = 1 * time.Millisecond
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
arg := structs.RegisterRequest{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
}
var out struct{}
// Make sure we eventually fail with a no leader error, which we should
// see given the short timeout.
err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out)
if err == nil || err.Error() != structs.ErrNoLeader.Error() {
t.Fatalf("bad: %v", err)
}
// Now make sure it goes through.
testrpc.WaitForTestAgent(t, s1.RPC, "dc1")
err = msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out)
if err != nil {
t.Fatalf("bad: %v", err)
}
}
func TestRPC_NoLeader_Fail_on_stale_read(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.RPCHoldTimeout = 1 * time.Millisecond
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
arg := structs.RegisterRequest{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
}
var out struct{}
// Make sure we eventually fail with a no leader error, which we should
// see given the short timeout.
err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out)
if err == nil || err.Error() != structs.ErrNoLeader.Error() {
t.Fatalf("bad: %v", err)
}
// Until leader has never been known, stale should fail
getKeysReq := structs.KeyListRequest{
Datacenter: "dc1",
Prefix: "",
Seperator: "/",
QueryOptions: structs.QueryOptions{AllowStale: true},
}
var keyList structs.IndexedKeyList
if err := msgpackrpc.CallWithCodec(codec, "KVS.ListKeys", &getKeysReq, &keyList); err.Error() != structs.ErrNoLeader.Error() {
t.Fatalf("expected %v but got err: %v", structs.ErrNoLeader, err)
}
testrpc.WaitForTestAgent(t, s1.RPC, "dc1")
if err := msgpackrpc.CallWithCodec(codec, "KVS.ListKeys", &getKeysReq, &keyList); err != nil {
t.Fatalf("Did not expect any error but got err: %v", err)
}
}
func TestRPC_NoLeader_Retry(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.RPCHoldTimeout = 10 * time.Second
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
codec := rpcClient(t, s1)
defer codec.Close()
arg := structs.RegisterRequest{
Datacenter: "dc1",
Node: "foo",
Address: "127.0.0.1",
}
var out struct{}
// This isn't sure-fire but tries to check that we don't have a
// leader going into the RPC, so we exercise the retry logic.
if ok, _, _ := s1.getLeader(); ok {
t.Fatalf("should not have a leader yet")
}
// The timeout is long enough to ride out any reasonable leader
// election.
err := msgpackrpc.CallWithCodec(codec, "Catalog.Register", &arg, &out)
if err != nil {
t.Fatalf("bad: %v", err)
}
}
func TestRPC_getLeader_ErrLeaderNotTracked(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
cluster := newTestCluster(t, &testClusterConfig{
Datacenter: "dc1",
Servers: 3,
ServerWait: func(t *testing.T, srv *Server) {
// The test cluster waits for a leader to be established
// but not for all the RPC tracking of all servers to be updated
// so we also want to wait for that here
retry.Run(t, func(r *retry.R) {
if !srv.IsLeader() {
_, _, err := srv.getLeader()
require.NoError(r, err)
}
})
},
})
// At this point we know we have a cluster with a leader and all followers are tracking that
// leader in the serverLookup struct. We need to find a follower to hack its server lookup
// to force the error we desire
var follower *Server
for _, srv := range cluster.Servers {
if !srv.IsLeader() {
follower = srv
break
}
}
_, leaderMeta, err := follower.getLeader()
require.NoError(t, err)
// now do some behind the scenes trickery on the followers server lookup
// to remove the leader from it so that we can force a ErrLeaderNotTracked error
follower.serverLookup.RemoveServer(leaderMeta)
isLeader, meta, err := follower.getLeader()
require.Error(t, err)
require.True(t, errors.Is(err, structs.ErrLeaderNotTracked))
require.Nil(t, meta)
require.False(t, isLeader)
}
type MockSink struct {
*bytes.Buffer
cancel bool
}
func (m *MockSink) ID() string {
return "Mock"
}
func (m *MockSink) Cancel() error {
m.cancel = true
return nil
}
func (m *MockSink) Close() error {
return nil
}
func TestRPC_blockingQuery(t *testing.T) {
t.Parallel()
dir, s := testServer(t)
defer os.RemoveAll(dir)
defer s.Shutdown()
require := require.New(t)
assert := assert.New(t)
// Perform a non-blocking query. Note that it's significant that the meta has
// a zero index in response - the implied opts.MinQueryIndex is also zero but
// this should not block still.
{
var opts structs.QueryOptions
var meta structs.QueryMeta
var calls int
fn := func(_ memdb.WatchSet, _ *state.Store) error {
calls++
return nil
}
if err := s.blockingQuery(&opts, &meta, fn); err != nil {
t.Fatalf("err: %v", err)
}
if calls != 1 {
t.Fatalf("bad: %d", calls)
}
}
// Perform a blocking query that gets woken up and loops around once.
{
opts := structs.QueryOptions{
MinQueryIndex: 3,
}
var meta structs.QueryMeta
var calls int
fn := func(ws memdb.WatchSet, _ *state.Store) error {
if calls == 0 {
meta.Index = 3
fakeCh := make(chan struct{})
close(fakeCh)
ws.Add(fakeCh)
} else {
meta.Index = 4
}
calls++
return nil
}
if err := s.blockingQuery(&opts, &meta, fn); err != nil {
t.Fatalf("err: %v", err)
}
if calls != 2 {
t.Fatalf("bad: %d", calls)
}
}
// Perform a blocking query that returns a zero index from blocking func (e.g.
// no state yet). This should still return an empty response immediately, but
// with index of 1 and then block on the next attempt. In one sense zero index
// is not really a valid response from a state method that is not an error but
// in practice a lot of state store operations do return it unless they
// explicitly special checks to turn 0 into 1. Often this is not caught or
// covered by tests but eventually when hit in the wild causes blocking
// clients to busy loop and burn CPU. This test ensure that blockingQuery
// systematically does the right thing to prevent future bugs like that.
{
opts := structs.QueryOptions{
MinQueryIndex: 0,
}
var meta structs.QueryMeta
var calls int
fn := func(ws memdb.WatchSet, _ *state.Store) error {
if opts.MinQueryIndex > 0 {
// If client requested blocking, block forever. This is simulating
// waiting for the watched resource to be initialized/written to giving
// it a non-zero index. Note the timeout on the query options is relied
// on to stop the test taking forever.
fakeCh := make(chan struct{})
ws.Add(fakeCh)
}
meta.Index = 0
calls++
return nil
}
require.NoError(s.blockingQuery(&opts, &meta, fn))
assert.Equal(1, calls)
assert.Equal(uint64(1), meta.Index,
"expect fake index of 1 to force client to block on next update")
// Simulate client making next request
opts.MinQueryIndex = 1
opts.MaxQueryTime = 20 * time.Millisecond // Don't wait too long
// This time we should block even though the func returns index 0 still
t0 := time.Now()
require.NoError(s.blockingQuery(&opts, &meta, fn))
t1 := time.Now()
assert.Equal(2, calls)
assert.Equal(uint64(1), meta.Index,
"expect fake index of 1 to force client to block on next update")
assert.True(t1.Sub(t0) > 20*time.Millisecond,
"should have actually blocked waiting for timeout")
}
// Perform a query that blocks and gets interrupted when the state store
// is abandoned.
{
opts := structs.QueryOptions{
MinQueryIndex: 3,
}
var meta structs.QueryMeta
var calls int
fn := func(_ memdb.WatchSet, _ *state.Store) error {
if calls == 0 {
meta.Index = 3
snap, err := s.fsm.Snapshot()
if err != nil {
t.Fatalf("err: %v", err)
}
defer snap.Release()
buf := bytes.NewBuffer(nil)
sink := &MockSink{buf, false}
if err := snap.Persist(sink); err != nil {
t.Fatalf("err: %v", err)
}
if err := s.fsm.Restore(sink); err != nil {
t.Fatalf("err: %v", err)
}
}
calls++
return nil
}
if err := s.blockingQuery(&opts, &meta, fn); err != nil {
t.Fatalf("err: %v", err)
}
if calls != 1 {
t.Fatalf("bad: %d", calls)
}
}
}
func TestRPC_ReadyForConsistentReads(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir, s := testServerWithConfig(t, func(c *Config) {
c.RPCHoldTimeout = 2 * time.Millisecond
})
defer os.RemoveAll(dir)
defer s.Shutdown()
testrpc.WaitForLeader(t, s.RPC, "dc1")
if !s.isReadyForConsistentReads() {
t.Fatal("Server should be ready for consistent reads")
}
s.resetConsistentReadReady()
err := s.consistentRead()
if err.Error() != "Not ready to serve consistent reads" {
t.Fatal("Server should NOT be ready for consistent reads")
}
go func() {
time.Sleep(100 * time.Millisecond)
s.setConsistentReadReady()
}()
retry.Run(t, func(r *retry.R) {
if err := s.consistentRead(); err != nil {
r.Fatalf("Expected server to be ready for consistent reads, got error %v", err)
}
})
}
func TestRPC_MagicByteTimeout(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.RPCHandshakeTimeout = 10 * time.Millisecond
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
// Connect to the server with bare TCP to simulate a malicious client trying
// to hold open resources.
addr := s1.config.RPCAdvertise
conn, err := net.DialTimeout("tcp", addr.String(), time.Second)
require.NoError(t, err)
defer conn.Close()
// Wait for more than the timeout. This is timing dependent so could fail if
// the CPU is super overloaded so the handler goroutine so I'm using a retry
// loop below to be sure but this feels like a pretty generous margin for
// error (10x the timeout and 100ms of scheduling time).
time.Sleep(100 * time.Millisecond)
// Set a read deadline on the Conn in case the timeout is not working we don't
// want the read below to block forever. Needs to be much longer than what we
// expect and the error should be different too.
conn.SetReadDeadline(time.Now().Add(3 * time.Second))
retry.Run(t, func(r *retry.R) {
// Sanity check the conn was closed by attempting to read from it (a write
// might not detect the close).
buf := make([]byte, 10)
_, err = conn.Read(buf)
require.Error(r, err)
require.Contains(r, err.Error(), "EOF")
})
}
func TestRPC_TLSHandshakeTimeout(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.RPCHandshakeTimeout = 10 * time.Millisecond
c.UseTLS = true
c.CAFile = "../../test/hostname/CertAuth.crt"
c.CertFile = "../../test/hostname/Alice.crt"
c.KeyFile = "../../test/hostname/Alice.key"
c.VerifyServerHostname = true
c.VerifyOutgoing = true
c.VerifyIncoming = true
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
// Connect to the server with TLS magic byte delivered on time
addr := s1.config.RPCAdvertise
conn, err := net.DialTimeout("tcp", addr.String(), time.Second)
require.NoError(t, err)
defer conn.Close()
// Write TLS byte to avoid being closed by either the (outer) first byte
// timeout or the fact that server requires TLS
_, err = conn.Write([]byte{pool.RPCTLS})
require.NoError(t, err)
// Wait for more than the timeout before we start a TLS handshake. This is
// timing dependent so could fail if the CPU is super overloaded so the
// handler goroutine so I'm using a retry loop below to be sure but this feels
// like a pretty generous margin for error (10x the timeout and 100ms of
// scheduling time).
time.Sleep(100 * time.Millisecond)
// Set a read deadline on the Conn in case the timeout is not working we don't
// want the read below to block forever. Needs to be much longer than what we
// expect and the error should be different too.
conn.SetReadDeadline(time.Now().Add(3 * time.Second))
retry.Run(t, func(r *retry.R) {
// Sanity check the conn was closed by attempting to read from it (a write
// might not detect the close).
buf := make([]byte, 10)
_, err = conn.Read(buf)
require.Error(r, err)
require.Contains(r, err.Error(), "EOF")
})
}
func TestRPC_PreventsTLSNesting(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
cases := []struct {
name string
outerByte pool.RPCType
innerByte pool.RPCType
wantClose bool
}{
{
// Base case, sanity check normal RPC in TLS works
name: "RPC in TLS",
outerByte: pool.RPCTLS,
innerByte: pool.RPCConsul,
wantClose: false,
},
{
// Nested TLS-in-TLS
name: "TLS in TLS",
outerByte: pool.RPCTLS,
innerByte: pool.RPCTLS,
wantClose: true,
},
{
// Nested TLS-in-TLS
name: "TLS in Insecure TLS",
outerByte: pool.RPCTLSInsecure,
innerByte: pool.RPCTLS,
wantClose: true,
},
{
// Nested TLS-in-TLS
name: "Insecure TLS in TLS",
outerByte: pool.RPCTLS,
innerByte: pool.RPCTLSInsecure,
wantClose: true,
},
{
// Nested TLS-in-TLS
name: "Insecure TLS in Insecure TLS",
outerByte: pool.RPCTLSInsecure,
innerByte: pool.RPCTLSInsecure,
wantClose: true,
},
}
for _, tc := range cases {
t.Run(tc.name, func(t *testing.T) {
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.UseTLS = true
c.CAFile = "../../test/hostname/CertAuth.crt"
c.CertFile = "../../test/hostname/Alice.crt"
c.KeyFile = "../../test/hostname/Alice.key"
c.VerifyServerHostname = true
c.VerifyOutgoing = true
c.VerifyIncoming = false // saves us getting client cert setup
c.Domain = "consul"
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
// Connect to the server with TLS magic byte delivered on time
addr := s1.config.RPCAdvertise
conn, err := net.DialTimeout("tcp", addr.String(), time.Second)
require.NoError(t, err)
defer conn.Close()
// Write Outer magic byte
_, err = conn.Write([]byte{byte(tc.outerByte)})
require.NoError(t, err)
// Start tls client
tlsWrap := s1.tlsConfigurator.OutgoingRPCWrapper()
tlsConn, err := tlsWrap("dc1", conn)
require.NoError(t, err)
// Write Inner magic byte
_, err = tlsConn.Write([]byte{byte(tc.innerByte)})
require.NoError(t, err)
if tc.wantClose {
// Allow up to a second for a read failure to indicate conn was closed by
// server.
conn.SetReadDeadline(time.Now().Add(1 * time.Second))
retry.Run(t, func(r *retry.R) {
// Sanity check the conn was closed by attempting to read from it (a
// write might not detect the close).
buf := make([]byte, 10)
_, err = tlsConn.Read(buf)
require.Error(r, err)
require.Contains(r, err.Error(), "EOF")
})
} else {
// Set a shorter read deadline that should typically be enough to detect
// immediate close but will also not make test hang forever. This
// positive case is mostly just a sanity check that the test code here
// is actually not failing just due to some other error in the way we
// setup TLS. It also sanity checks that we still allow valid TLS conns
// but if it produces possible false-positives in CI sometimes that's
// not such a huge deal - CI won't be brittle and it will have done it's
// job as a sanity check most of the time.
conn.SetReadDeadline(time.Now().Add(50 * time.Millisecond))
buf := make([]byte, 10)
_, err = tlsConn.Read(buf)
require.Error(t, err)
require.Contains(t, err.Error(), "i/o timeout")
}
})
}
}
func connectClient(t *testing.T, s1 *Server, mb pool.RPCType, useTLS, wantOpen bool, message string) net.Conn {
t.Helper()
addr := s1.config.RPCAdvertise
tlsWrap := s1.tlsConfigurator.OutgoingRPCWrapper()
conn, err := net.DialTimeout("tcp", addr.String(), time.Second)
require.NoError(t, err)
// Write magic byte so we aren't timed out
outerByte := mb
if useTLS {
outerByte = pool.RPCTLS
}
_, err = conn.Write([]byte{byte(outerByte)})
require.NoError(t, err)
if useTLS {
tlsConn, err := tlsWrap(s1.config.Datacenter, conn)
// Subtly, tlsWrap will NOT actually do a handshake in this case - it only
// does so for some configs, so even if the server closed the conn before
// handshake this won't fail and it's only when we attempt to read or write
// that we'll see the broken pipe.
require.NoError(t, err, "%s: wanted open conn, failed TLS handshake: %s",
message, err)
conn = tlsConn
// Write Inner magic byte
_, err = conn.Write([]byte{byte(mb)})
if !wantOpen {
// TLS Handshake will be done on this attempt to write and should fail
require.Error(t, err, "%s: wanted closed conn, TLS Handshake succeeded", message)
} else {
require.NoError(t, err, "%s: wanted open conn, failed writing inner magic byte: %s",
message, err)
}
}
// Check if the conn is in the state we want.
retry.Run(t, func(r *retry.R) {
// Don't wait around as server won't be sending data but the read will fail
// immediately if the conn is closed.
conn.SetReadDeadline(time.Now().Add(1 * time.Millisecond))
buf := make([]byte, 10)
_, err := conn.Read(buf)
require.Error(r, err)
if wantOpen {
require.Contains(r, err.Error(), "i/o timeout",
"%s: wanted an open conn (read timeout)", message)
} else {
if useTLS {
require.Error(r, err)
// TLS may fail during either read or write of the handshake so there
// are a few different errors that come up.
if !strings.Contains(err.Error(), "read: connection reset by peer") &&
!strings.Contains(err.Error(), "write: connection reset by peer") &&
!strings.Contains(err.Error(), "write: broken pipe") {
r.Fatalf("%s: wanted closed conn got err: %s", message, err)
}
} else {
require.Contains(r, err.Error(), "EOF", "%s: wanted a closed conn",
message)
}
}
})
return conn
}
func TestRPC_RPCMaxConnsPerClient(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
cases := []struct {
name string
magicByte pool.RPCType
tlsEnabled bool
}{
{"RPC", pool.RPCMultiplexV2, false},
{"RPC TLS", pool.RPCMultiplexV2, true},
{"Raft", pool.RPCRaft, false},
{"Raft TLS", pool.RPCRaft, true},
}
for _, tc := range cases {
tc := tc
t.Run(tc.name, func(t *testing.T) {
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.RPCMaxConnsPerClient = 2
if tc.tlsEnabled {
c.UseTLS = true
c.CAFile = "../../test/hostname/CertAuth.crt"
c.CertFile = "../../test/hostname/Alice.crt"
c.KeyFile = "../../test/hostname/Alice.key"
c.VerifyServerHostname = true
c.VerifyOutgoing = true
c.VerifyIncoming = false // saves us getting client cert setup
c.Domain = "consul"
}
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
// Connect to the server with bare TCP
conn1 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn1")
defer conn1.Close()
// Two conns should succeed
conn2 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn2")
defer conn2.Close()
// Third should be closed byt the limiter
conn3 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, false, "conn3")
defer conn3.Close()
// If we close one of the earlier ones, we should be able to open another
addr := conn1.RemoteAddr()
conn1.Close()
retry.Run(t, func(r *retry.R) {
if n := s1.rpcConnLimiter.NumOpen(addr); n >= 2 {
r.Fatal("waiting for open conns to drop")
}
})
conn4 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn4")
defer conn4.Close()
// Reload config with higher limit
rc := ReloadableConfig{
RPCRateLimit: s1.config.RPCRateLimit,
RPCMaxBurst: s1.config.RPCMaxBurst,
RPCMaxConnsPerClient: 10,
}
require.NoError(t, s1.ReloadConfig(rc))
// Now another conn should be allowed
conn5 := connectClient(t, s1, tc.magicByte, tc.tlsEnabled, true, "conn5")
defer conn5.Close()
})
}
}
func TestRPC_readUint32(t *testing.T) {
cases := []struct {
name string
writeFn func(net.Conn)
readFn func(*testing.T, net.Conn)
}{
{
name: "timeouts irrelevant",
writeFn: func(conn net.Conn) {
_ = binary.Write(conn, binary.BigEndian, uint32(42))
_ = binary.Write(conn, binary.BigEndian, uint32(math.MaxUint32))
_ = binary.Write(conn, binary.BigEndian, uint32(1))
},
readFn: func(t *testing.T, conn net.Conn) {
t.Helper()
v, err := readUint32(conn, 5*time.Second)
require.NoError(t, err)
require.Equal(t, uint32(42), v)
v, err = readUint32(conn, 5*time.Second)
require.NoError(t, err)
require.Equal(t, uint32(math.MaxUint32), v)
v, err = readUint32(conn, 5*time.Second)
require.NoError(t, err)
require.Equal(t, uint32(1), v)
},
},
{
name: "triggers timeout on last read",
writeFn: func(conn net.Conn) {
_ = binary.Write(conn, binary.BigEndian, uint32(42))
_ = binary.Write(conn, binary.BigEndian, uint32(math.MaxUint32))
_ = binary.Write(conn, binary.BigEndian, uint16(1)) // half as many bytes as expected
},
readFn: func(t *testing.T, conn net.Conn) {
t.Helper()
v, err := readUint32(conn, 5*time.Second)
require.NoError(t, err)
require.Equal(t, uint32(42), v)
v, err = readUint32(conn, 5*time.Second)
require.NoError(t, err)
require.Equal(t, uint32(math.MaxUint32), v)
_, err = readUint32(conn, 50*time.Millisecond)
require.Error(t, err)
nerr, ok := err.(net.Error)
require.True(t, ok)
require.True(t, nerr.Timeout())
},
},
}
for _, tc := range cases {
tc := tc
t.Run(tc.name, func(t *testing.T) {
var doneWg sync.WaitGroup
defer doneWg.Wait()
client, server := net.Pipe()
defer client.Close()
defer server.Close()
// Client pushes some data.
doneWg.Add(1)
go func() {
doneWg.Done()
tc.writeFn(client)
}()
// The server tests the function for us.
tc.readFn(t, server)
})
}
}
func TestRPC_LocalTokenStrippedOnForward(t *testing.T) {
if testing.Short() {
t.Skip("too slow for testing.Short")
}
t.Parallel()
dir1, s1 := testServerWithConfig(t, func(c *Config) {
c.PrimaryDatacenter = "dc1"
c.ACLsEnabled = true
c.ACLDefaultPolicy = "deny"
c.ACLMasterToken = "root"
})
defer os.RemoveAll(dir1)
defer s1.Shutdown()
testrpc.WaitForLeader(t, s1.RPC, "dc1")
codec := rpcClient(t, s1)
defer codec.Close()
dir2, s2 := testServerWithConfig(t, func(c *Config) {
c.Datacenter = "dc2"
c.PrimaryDatacenter = "dc1"
c.ACLsEnabled = true
c.ACLDefaultPolicy = "deny"
c.ACLTokenReplication = true
c.ACLReplicationRate = 100
c.ACLReplicationBurst = 100
c.ACLReplicationApplyLimit = 1000000
})
s2.tokens.UpdateReplicationToken("root", tokenStore.TokenSourceConfig)
testrpc.WaitForLeader(t, s2.RPC, "dc2")
defer os.RemoveAll(dir2)
defer s2.Shutdown()
codec2 := rpcClient(t, s2)
defer codec2.Close()
// Try to join.
joinWAN(t, s2, s1)
testrpc.WaitForLeader(t, s1.RPC, "dc1")
testrpc.WaitForLeader(t, s1.RPC, "dc2")
// Wait for legacy acls to be disabled so we are clear that
// legacy replication isn't meddling.
waitForNewACLs(t, s1)
waitForNewACLs(t, s2)
waitForNewACLReplication(t, s2, structs.ACLReplicateTokens, 1, 1, 0)
// create simple kv policy
kvPolicy, err := upsertTestPolicyWithRules(codec, "root", "dc1", `
key_prefix "" { policy = "write" }
`)
require.NoError(t, err)
// Wait for it to replicate
retry.Run(t, func(r *retry.R) {
_, p, err := s2.fsm.State().ACLPolicyGetByID(nil, kvPolicy.ID, &structs.EnterpriseMeta{})
require.Nil(r, err)
require.NotNil(r, p)
})
// create local token that only works in DC2
localToken2, err := upsertTestToken(codec, "root", "dc2", func(token *structs.ACLToken) {
token.Local = true
token.Policies = []structs.ACLTokenPolicyLink{
{ID: kvPolicy.ID},
}
})
require.NoError(t, err)
// Try to use it locally (it should work)
arg := structs.KVSRequest{
Datacenter: "dc2",
Op: api.KVSet,
DirEnt: structs.DirEntry{
Key: "foo",
Value: []byte("bar"),
},
WriteRequest: structs.WriteRequest{Token: localToken2.SecretID},
}
var out bool
err = msgpackrpc.CallWithCodec(codec2, "KVS.Apply", &arg, &out)
require.NoError(t, err)
require.Equal(t, localToken2.SecretID, arg.WriteRequest.Token, "token should not be stripped")
// Try to use it remotely
arg = structs.KVSRequest{
Datacenter: "dc1",
Op: api.KVSet,
DirEnt: structs.DirEntry{
Key: "foo",
Value: []byte("bar"),
},
WriteRequest: structs.WriteRequest{Token: localToken2.SecretID},
}
err = msgpackrpc.CallWithCodec(codec2, "KVS.Apply", &arg, &out)
if !acl.IsErrPermissionDenied(err) {
t.Fatalf("err: %v", err)
}
// Update the anon token to also be able to write to kv
{
tokenUpsertReq := structs.ACLTokenSetRequest{
Datacenter: "dc1",
ACLToken: structs.ACLToken{
AccessorID: structs.ACLTokenAnonymousID,
Policies: []structs.ACLTokenPolicyLink{
{
ID: kvPolicy.ID,
},
},
},
WriteRequest: structs.WriteRequest{Token: "root"},
}
token := structs.ACLToken{}
err = msgpackrpc.CallWithCodec(codec, "ACL.TokenSet", &tokenUpsertReq, &token)
require.NoError(t, err)
require.NotEmpty(t, token.SecretID)
}
// Try to use it remotely again, but this time it should fallback to anon
arg = structs.KVSRequest{
Datacenter: "dc1",
Op: api.KVSet,
DirEnt: structs.DirEntry{
Key: "foo",
Value: []byte("bar"),
},
WriteRequest: structs.WriteRequest{Token: localToken2.SecretID},
}
err = msgpackrpc.CallWithCodec(codec2, "KVS.Apply", &arg, &out)
require.NoError(t, err)
require.Equal(t, localToken2.SecretID, arg.WriteRequest.Token, "token should not be stripped")
}
func TestCanRetry(t *testing.T) {
type testCase struct {
name string
req structs.RPCInfo
err error
expected bool
}
run := func(t *testing.T, tc testCase) {
require.Equal(t, tc.expected, canRetry(tc.req, tc.err))
}
var testCases = []testCase{
{
name: "unexpected error",
err: fmt.Errorf("some arbitrary error"),
expected: false,
},
{
name: "checking error",
err: fmt.Errorf("some wrapping :%w", ErrChunkingResubmit),
expected: true,
},
{
name: "no leader error",
err: fmt.Errorf("some wrapping: %w", structs.ErrNoLeader),
expected: true,
},
{
name: "EOF on read request",
req: isReadRequest{},
err: io.EOF,
expected: true,
},
{
name: "EOF on write request",
err: io.EOF,
expected: false,
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
run(t, tc)
})
}
}
type isReadRequest struct {
structs.RPCInfo
}
func (r isReadRequest) IsRead() bool {
return true
}