go-metrics is updated to 0.3.6 to properly handle help in prometheus metrics This fixes https://github.com/hashicorp/consul/issues/9303 and https://github.com/hashicorp/consul/issues/9471
go-metrics
This library provides a metrics
package which can be used to instrument code,
expose application metrics, and profile runtime performance in a flexible manner.
Sinks
The metrics
package makes use of a MetricSink
interface to support delivery
to any type of backend. Currently the following sinks are provided:
- StatsiteSink : Sinks to a statsite instance (TCP)
- StatsdSink: Sinks to a StatsD / statsite instance (UDP)
- PrometheusSink: Sinks to a Prometheus metrics endpoint (exposed via HTTP for scrapes)
- InmemSink : Provides in-memory aggregation, can be used to export stats
- FanoutSink : Sinks to multiple sinks. Enables writing to multiple statsite instances for example.
- BlackholeSink : Sinks to nowhere
In addition to the sinks, the InmemSignal
can be used to catch a signal,
and dump a formatted output of recent metrics. For example, when a process gets
a SIGUSR1, it can dump to stderr recent performance metrics for debugging.
Labels
Most metrics do have an equivalent ending with WithLabels
, such methods
allow to push metrics with labels and use some features of underlying Sinks
(ex: translated into Prometheus labels).
Since some of these labels may increase greatly cardinality of metrics, the library allow to filter labels using a blacklist/whitelist filtering system which is global to all metrics.
- If
Config.AllowedLabels
is not nil, then only labels specified in this value will be sent to underlying Sink, otherwise, all labels are sent by default. - If
Config.BlockedLabels
is not nil, any label specified in this value will not be sent to underlying Sinks.
By default, both Config.AllowedLabels
and Config.BlockedLabels
are nil, meaning that
no tags are filetered at all, but it allow to a user to globally block some tags with high
cardinality at application level.
Examples
Here is an example of using the package:
func SlowMethod() {
// Profiling the runtime of a method
defer metrics.MeasureSince([]string{"SlowMethod"}, time.Now())
}
// Configure a statsite sink as the global metrics sink
sink, _ := metrics.NewStatsiteSink("statsite:8125")
metrics.NewGlobal(metrics.DefaultConfig("service-name"), sink)
// Emit a Key/Value pair
metrics.EmitKey([]string{"questions", "meaning of life"}, 42)
Here is an example of setting up a signal handler:
// Setup the inmem sink and signal handler
inm := metrics.NewInmemSink(10*time.Second, time.Minute)
sig := metrics.DefaultInmemSignal(inm)
metrics.NewGlobal(metrics.DefaultConfig("service-name"), inm)
// Run some code
inm.SetGauge([]string{"foo"}, 42)
inm.EmitKey([]string{"bar"}, 30)
inm.IncrCounter([]string{"baz"}, 42)
inm.IncrCounter([]string{"baz"}, 1)
inm.IncrCounter([]string{"baz"}, 80)
inm.AddSample([]string{"method", "wow"}, 42)
inm.AddSample([]string{"method", "wow"}, 100)
inm.AddSample([]string{"method", "wow"}, 22)
....
When a signal comes in, output like the following will be dumped to stderr:
[2014-01-28 14:57:33.04 -0800 PST][G] 'foo': 42.000
[2014-01-28 14:57:33.04 -0800 PST][P] 'bar': 30.000
[2014-01-28 14:57:33.04 -0800 PST][C] 'baz': Count: 3 Min: 1.000 Mean: 41.000 Max: 80.000 Stddev: 39.509
[2014-01-28 14:57:33.04 -0800 PST][S] 'method.wow': Count: 3 Min: 22.000 Mean: 54.667 Max: 100.000 Stddev: 40.513