mirror of
https://github.com/status-im/consul.git
synced 2025-01-10 05:45:46 +00:00
78b170ad50
* Refactors the leafcert package to not have a dependency on agent/consul and agent/cache to avoid import cycles. This way the xds controller can just import the leafcert package to use the leafcert manager. The leaf cert logic in the controller: * Sets up watches for leaf certs that are referenced in the ProxyStateTemplate (which generates the leaf certs too). * Gets the leaf cert from the leaf cert cache * Stores the leaf cert in the ProxyState that's pushed to xds * For the cert watches, this PR also uses a bimapper + a thin wrapper to map leaf cert events to related ProxyStateTemplates Since bimapper uses a resource.Reference or resource.ID to map between two resource types, I've created an internal type for a leaf certificate to use for the resource.Reference, since it's not a v2 resource. The wrapper allows mapping events to resources (as opposed to mapping resources to resources) The controller tests: Unit: Ensure that we resolve leaf cert references Lifecycle: Ensure that when the CA is updated, the leaf cert is as well Also adds a new spiffe id type, and adds workload identity and workload identity URI to leaf certs. This is so certs are generated with the new workload identity based SPIFFE id. * Pulls out some leaf cert test helpers into a helpers file so it can be used in the xds controller tests. * Wires up leaf cert manager dependency * Support getting token from proxytracker * Add workload identity spiffe id type to the authorize and sign functions --------- Co-authored-by: John Murret <john.murret@hashicorp.com>
208 lines
5.9 KiB
Go
208 lines
5.9 KiB
Go
// Copyright (c) HashiCorp, Inc.
|
|
// SPDX-License-Identifier: BUSL-1.1
|
|
|
|
package connect
|
|
|
|
import (
|
|
"fmt"
|
|
"net/url"
|
|
"regexp"
|
|
"strings"
|
|
)
|
|
|
|
// CertURI represents a Connect-valid URI value for a TLS certificate.
|
|
// The user should type switch on the various implementations in this
|
|
// package to determine the type of URI and the data encoded within it.
|
|
//
|
|
// Note that the current implementations of this are all also SPIFFE IDs.
|
|
// However, we anticipate that we may accept URIs that are also not SPIFFE
|
|
// compliant and therefore the interface is named as such.
|
|
type CertURI interface {
|
|
// URI is the valid URI value used in the cert.
|
|
URI() *url.URL
|
|
}
|
|
|
|
var (
|
|
spiffeIDWorkloadIdentityRegexp = regexp.MustCompile(
|
|
`^(?:/ap/([^/]+))/ns/([^/]+)/identity/([^/]+)$`)
|
|
spiffeIDServiceRegexp = regexp.MustCompile(
|
|
`^(?:/ap/([^/]+))?/ns/([^/]+)/dc/([^/]+)/svc/([^/]+)$`)
|
|
spiffeIDAgentRegexp = regexp.MustCompile(
|
|
`^(?:/ap/([^/]+))?/agent/client/dc/([^/]+)/id/([^/]+)$`)
|
|
spiffeIDServerRegexp = regexp.MustCompile(
|
|
`^/agent/server/dc/([^/]+)$`)
|
|
spiffeIDMeshGatewayRegexp = regexp.MustCompile(
|
|
`^(?:/ap/([^/]+))?/gateway/mesh/dc/([^/]+)$`)
|
|
)
|
|
|
|
// ParseCertURIFromString attempts to parse a string representation of a
|
|
// certificate URI as a convenience helper around ParseCertURI.
|
|
func ParseCertURIFromString(input string) (CertURI, error) {
|
|
// Parse the certificate URI from the string
|
|
uriRaw, err := url.Parse(input)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return ParseCertURI(uriRaw)
|
|
}
|
|
|
|
// ParseCertURI parses a the URI value from a TLS certificate.
|
|
func ParseCertURI(input *url.URL) (CertURI, error) {
|
|
if input.Scheme != "spiffe" {
|
|
return nil, fmt.Errorf("SPIFFE ID must have 'spiffe' scheme")
|
|
}
|
|
|
|
// Path is the raw value of the path without url decoding values.
|
|
// RawPath is empty if there were no encoded values so we must
|
|
// check both.
|
|
path := input.Path
|
|
if input.RawPath != "" {
|
|
path = input.RawPath
|
|
}
|
|
|
|
// Test for service IDs
|
|
if v := spiffeIDServiceRegexp.FindStringSubmatch(path); v != nil {
|
|
// Determine the values. We assume they're reasonable to save cycles,
|
|
// but if the raw path is not empty that means that something is
|
|
// URL encoded so we go to the slow path.
|
|
ap := v[1]
|
|
ns := v[2]
|
|
dc := v[3]
|
|
service := v[4]
|
|
if input.RawPath != "" {
|
|
var err error
|
|
if ap, err = url.PathUnescape(v[1]); err != nil {
|
|
return nil, fmt.Errorf("Invalid admin partition: %s", err)
|
|
}
|
|
if ns, err = url.PathUnescape(v[2]); err != nil {
|
|
return nil, fmt.Errorf("Invalid namespace: %s", err)
|
|
}
|
|
if dc, err = url.PathUnescape(v[3]); err != nil {
|
|
return nil, fmt.Errorf("Invalid datacenter: %s", err)
|
|
}
|
|
if service, err = url.PathUnescape(v[4]); err != nil {
|
|
return nil, fmt.Errorf("Invalid service: %s", err)
|
|
}
|
|
}
|
|
|
|
if ap == "" {
|
|
ap = "default"
|
|
}
|
|
|
|
return &SpiffeIDService{
|
|
Host: input.Host,
|
|
Partition: ap,
|
|
Namespace: ns,
|
|
Datacenter: dc,
|
|
Service: service,
|
|
}, nil
|
|
} else if v := spiffeIDWorkloadIdentityRegexp.FindStringSubmatch(path); v != nil {
|
|
// Determine the values. We assume they're reasonable to save cycles,
|
|
// but if the raw path is not empty that means that something is
|
|
// URL encoded so we go to the slow path.
|
|
ap := v[1]
|
|
ns := v[2]
|
|
workloadIdentity := v[3]
|
|
if input.RawPath != "" {
|
|
var err error
|
|
if ap, err = url.PathUnescape(v[1]); err != nil {
|
|
return nil, fmt.Errorf("Invalid admin partition: %s", err)
|
|
}
|
|
if ns, err = url.PathUnescape(v[2]); err != nil {
|
|
return nil, fmt.Errorf("Invalid namespace: %s", err)
|
|
}
|
|
if workloadIdentity, err = url.PathUnescape(v[3]); err != nil {
|
|
return nil, fmt.Errorf("Invalid workload identity: %s", err)
|
|
}
|
|
}
|
|
|
|
return &SpiffeIDWorkloadIdentity{
|
|
TrustDomain: input.Host,
|
|
Partition: ap,
|
|
Namespace: ns,
|
|
WorkloadIdentity: workloadIdentity,
|
|
}, nil
|
|
} else if v := spiffeIDAgentRegexp.FindStringSubmatch(path); v != nil {
|
|
// Determine the values. We assume they're reasonable to save cycles,
|
|
// but if the raw path is not empty that means that something is
|
|
// URL encoded so we go to the slow path.
|
|
ap := v[1]
|
|
dc := v[2]
|
|
agent := v[3]
|
|
if input.RawPath != "" {
|
|
var err error
|
|
if ap, err = url.PathUnescape(v[1]); err != nil {
|
|
return nil, fmt.Errorf("Invalid admin partition: %s", err)
|
|
}
|
|
if dc, err = url.PathUnescape(v[2]); err != nil {
|
|
return nil, fmt.Errorf("Invalid datacenter: %s", err)
|
|
}
|
|
if agent, err = url.PathUnescape(v[3]); err != nil {
|
|
return nil, fmt.Errorf("Invalid node: %s", err)
|
|
}
|
|
}
|
|
|
|
if ap == "" {
|
|
ap = "default"
|
|
}
|
|
|
|
return &SpiffeIDAgent{
|
|
Host: input.Host,
|
|
Partition: ap,
|
|
Datacenter: dc,
|
|
Agent: agent,
|
|
}, nil
|
|
} else if v := spiffeIDMeshGatewayRegexp.FindStringSubmatch(path); v != nil {
|
|
// Determine the values. We assume they're reasonable to save cycles,
|
|
// but if the raw path is not empty that means that something is
|
|
// URL encoded so we go to the slow path.
|
|
ap := v[1]
|
|
dc := v[2]
|
|
if input.RawPath != "" {
|
|
var err error
|
|
if ap, err = url.PathUnescape(v[1]); err != nil {
|
|
return nil, fmt.Errorf("Invalid admin partition: %s", err)
|
|
}
|
|
if dc, err = url.PathUnescape(v[2]); err != nil {
|
|
return nil, fmt.Errorf("Invalid datacenter: %s", err)
|
|
}
|
|
}
|
|
|
|
if ap == "" {
|
|
ap = "default"
|
|
}
|
|
|
|
return &SpiffeIDMeshGateway{
|
|
Host: input.Host,
|
|
Partition: ap,
|
|
Datacenter: dc,
|
|
}, nil
|
|
} else if v := spiffeIDServerRegexp.FindStringSubmatch(path); v != nil {
|
|
dc := v[1]
|
|
if input.RawPath != "" {
|
|
var err error
|
|
if dc, err = url.PathUnescape(v[1]); err != nil {
|
|
return nil, fmt.Errorf("Invalid datacenter: %s", err)
|
|
}
|
|
}
|
|
|
|
return &SpiffeIDServer{
|
|
Host: input.Host,
|
|
Datacenter: dc,
|
|
}, nil
|
|
}
|
|
|
|
// Test for signing ID
|
|
if input.Path == "" {
|
|
idx := strings.Index(input.Host, ".")
|
|
if idx > 0 {
|
|
return &SpiffeIDSigning{
|
|
ClusterID: input.Host[:idx],
|
|
Domain: input.Host[idx+1:],
|
|
}, nil
|
|
}
|
|
}
|
|
|
|
return nil, fmt.Errorf("SPIFFE ID is not in the expected format: %s", input.String())
|
|
}
|