consul/agent/proxycfg/snapshot.go
R.B. Boyer 6adad71125
wan federation via mesh gateways (#6884)
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:

There are several distinct chunks of code that are affected:

* new flags and config options for the server

* retry join WAN is slightly different

* retry join code is shared to discover primary mesh gateways from secondary datacenters

* because retry join logic runs in the *agent* and the results of that
  operation for primary mesh gateways are needed in the *server* there are
  some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
  at multiple layers of abstraction just to pass the data down to the right
  layer.

* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers

* the function signature for RPC dialing picked up a new required field (the
  node name of the destination)

* several new RPCs for manipulating a FederationState object:
  `FederationState:{Apply,Get,List,ListMeshGateways}`

* 3 read-only internal APIs for debugging use to invoke those RPCs from curl

* raft and fsm changes to persist these FederationStates

* replication for FederationStates as they are canonically stored in the
  Primary and replicated to the Secondaries.

* a special derivative of anti-entropy that runs in secondaries to snapshot
  their local mesh gateway `CheckServiceNodes` and sync them into their upstream
  FederationState in the primary (this works in conjunction with the
  replication to distribute addresses for all mesh gateways in all DCs to all
  other DCs)

* a "gateway locator" convenience object to make use of this data to choose
  the addresses of gateways to use for any given RPC or gossip operation to a
  remote DC. This gets data from the "retry join" logic in the agent and also
  directly calls into the FSM.

* RPC (`:8300`) on the server sniffs the first byte of a new connection to
  determine if it's actually doing native TLS. If so it checks the ALPN header
  for protocol determination (just like how the existing system uses the
  type-byte marker).

* 2 new kinds of protocols are exclusively decoded via this native TLS
  mechanism: one for ferrying "packet" operations (udp-like) from the gossip
  layer and one for "stream" operations (tcp-like). The packet operations
  re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
  overhead.

* the server instances specially wrap the `memberlist.NetTransport` when running
  with gateway federation enabled (in a `wanfed.Transport`). The general gist is
  that if it tries to dial a node in the SAME datacenter (deduced by looking
  at the suffix of the node name) there is no change. If dialing a DIFFERENT
  datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
  gateways to eventually end up in a server's :8300 port.

* a new flag when launching a mesh gateway via `consul connect envoy` to
  indicate that the servers are to be exposed. This sets a special service
  meta when registering the gateway into the catalog.

* `proxycfg/xds` notice this metadata blob to activate additional watches for
  the FederationState objects as well as the location of all of the consul
  servers in that datacenter.

* `xds:` if the extra metadata is in place additional clusters are defined in a
  DC to bulk sink all traffic to another DC's gateways. For the current
  datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
  balances all servers as well as one mini-cluster per node
  (`<node>.server.<dc>.consul`)

* the `consul tls cert create` command got a new flag (`-node`) to help create
  an additional SAN in certs that can be used with this flavor of federation.
2020-03-09 15:59:02 -05:00

176 lines
5.8 KiB
Go

package proxycfg
import (
"context"
"github.com/hashicorp/consul/agent/structs"
"github.com/mitchellh/copystructure"
)
type configSnapshotConnectProxy struct {
Leaf *structs.IssuedCert
DiscoveryChain map[string]*structs.CompiledDiscoveryChain // this is keyed by the Upstream.Identifier(), not the chain name
WatchedUpstreams map[string]map[string]context.CancelFunc
WatchedUpstreamEndpoints map[string]map[string]structs.CheckServiceNodes
WatchedGateways map[string]map[string]context.CancelFunc
WatchedGatewayEndpoints map[string]map[string]structs.CheckServiceNodes
WatchedServiceChecks map[structs.ServiceID][]structs.CheckType // TODO: missing garbage collection
PreparedQueryEndpoints map[string]structs.CheckServiceNodes // DEPRECATED:see:WatchedUpstreamEndpoints
}
func (c *configSnapshotConnectProxy) IsEmpty() bool {
if c == nil {
return true
}
return c.Leaf == nil &&
len(c.DiscoveryChain) == 0 &&
len(c.WatchedUpstreams) == 0 &&
len(c.WatchedUpstreamEndpoints) == 0 &&
len(c.WatchedGateways) == 0 &&
len(c.WatchedGatewayEndpoints) == 0 &&
len(c.WatchedServiceChecks) == 0 &&
len(c.PreparedQueryEndpoints) == 0
}
type configSnapshotMeshGateway struct {
// WatchedServices is a map of service id to a cancel function. This cancel
// function is tied to the watch of connect enabled services for the given
// id. If the main datacenter services watch would indicate the removal of
// a service all together we then cancel watching that service for its
// connect endpoints.
WatchedServices map[structs.ServiceID]context.CancelFunc
// WatchedServicesSet indicates that the watch on the datacenters services
// has completed. Even when there are no connect services, this being set
// (and the Connect roots being available) will be enough for the config
// snapshot to be considered valid. In the case of Envoy, this allows it to
// start its listeners even when no services would be proxied and allow its
// health check to pass.
WatchedServicesSet bool
// WatchedDatacenters is a map of datacenter name to a cancel function.
// This cancel function is tied to the watch of mesh-gateway services in
// that datacenter.
WatchedDatacenters map[string]context.CancelFunc
// ServiceGroups is a map of service id to the service instances of that
// service in the local datacenter.
ServiceGroups map[structs.ServiceID]structs.CheckServiceNodes
// ServiceResolvers is a map of service id to an associated
// service-resolver config entry for that service.
ServiceResolvers map[structs.ServiceID]*structs.ServiceResolverConfigEntry
// GatewayGroups is a map of datacenter names to services of kind
// mesh-gateway in that datacenter.
GatewayGroups map[string]structs.CheckServiceNodes
// FedStateGateways is a map of datacenter names to mesh gateways in that
// datacenter.
FedStateGateways map[string]structs.CheckServiceNodes
// ConsulServers is the list of consul servers in this datacenter.
ConsulServers structs.CheckServiceNodes
}
func (c *configSnapshotMeshGateway) Datacenters() []string {
sz1, sz2 := len(c.GatewayGroups), len(c.FedStateGateways)
sz := sz1
if sz2 > sz1 {
sz = sz2
}
dcs := make([]string, 0, sz)
for dc, _ := range c.GatewayGroups {
dcs = append(dcs, dc)
}
for dc, _ := range c.FedStateGateways {
if _, ok := c.GatewayGroups[dc]; !ok {
dcs = append(dcs, dc)
}
}
return dcs
}
func (c *configSnapshotMeshGateway) IsEmpty() bool {
if c == nil {
return true
}
return len(c.WatchedServices) == 0 &&
!c.WatchedServicesSet &&
len(c.WatchedDatacenters) == 0 &&
len(c.ServiceGroups) == 0 &&
len(c.ServiceResolvers) == 0 &&
len(c.GatewayGroups) == 0 &&
len(c.FedStateGateways) == 0 &&
len(c.ConsulServers) == 0
}
// ConfigSnapshot captures all the resulting config needed for a proxy instance.
// It is meant to be point-in-time coherent and is used to deliver the current
// config state to observers who need it to be pushed in (e.g. XDS server).
type ConfigSnapshot struct {
Kind structs.ServiceKind
Service string
ProxyID structs.ServiceID
Address string
Port int
ServiceMeta map[string]string
TaggedAddresses map[string]structs.ServiceAddress
Proxy structs.ConnectProxyConfig
Datacenter string
ServerSNIFn ServerSNIFunc
Roots *structs.IndexedCARoots
// connect-proxy specific
ConnectProxy configSnapshotConnectProxy
// mesh-gateway specific
MeshGateway configSnapshotMeshGateway
// Skip intentions for now as we don't push those down yet, just pre-warm them.
}
// Valid returns whether or not the snapshot has all required fields filled yet.
func (s *ConfigSnapshot) Valid() bool {
switch s.Kind {
case structs.ServiceKindConnectProxy:
return s.Roots != nil && s.ConnectProxy.Leaf != nil
case structs.ServiceKindMeshGateway:
if s.ServiceMeta[structs.MetaWANFederationKey] == "1" {
if len(s.MeshGateway.ConsulServers) == 0 {
return false
}
}
return s.Roots != nil && (s.MeshGateway.WatchedServicesSet || len(s.MeshGateway.ServiceGroups) > 0)
default:
return false
}
}
// Clone makes a deep copy of the snapshot we can send to other goroutines
// without worrying that they will racily read or mutate shared maps etc.
func (s *ConfigSnapshot) Clone() (*ConfigSnapshot, error) {
snapCopy, err := copystructure.Copy(s)
if err != nil {
return nil, err
}
snap := snapCopy.(*ConfigSnapshot)
// nil these out as anything receiving one of these clones does not need them and should never "cancel" our watches
switch s.Kind {
case structs.ServiceKindConnectProxy:
snap.ConnectProxy.WatchedUpstreams = nil
snap.ConnectProxy.WatchedGateways = nil
case structs.ServiceKindMeshGateway:
snap.MeshGateway.WatchedDatacenters = nil
snap.MeshGateway.WatchedServices = nil
}
return snap, nil
}