consul/agent/proxycfg/state.go
2020-09-14 16:17:43 -06:00

1641 lines
55 KiB
Go

package proxycfg
import (
"context"
"errors"
"fmt"
"net"
"reflect"
"strings"
"time"
"github.com/hashicorp/consul/agent/cache"
cachetype "github.com/hashicorp/consul/agent/cache-types"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/logging"
"github.com/hashicorp/go-hclog"
"github.com/mitchellh/copystructure"
"github.com/mitchellh/mapstructure"
)
type CacheNotifier interface {
Notify(ctx context.Context, t string, r cache.Request,
correlationID string, ch chan<- cache.UpdateEvent) error
}
const (
coalesceTimeout = 200 * time.Millisecond
rootsWatchID = "roots"
leafWatchID = "leaf"
intentionsWatchID = "intentions"
serviceListWatchID = "service-list"
federationStateListGatewaysWatchID = "federation-state-list-mesh-gateways"
consulServerListWatchID = "consul-server-list"
datacentersWatchID = "datacenters"
serviceResolversWatchID = "service-resolvers"
gatewayServicesWatchID = "gateway-services"
gatewayConfigWatchID = "gateway-config"
externalServiceIDPrefix = "external-service:"
serviceLeafIDPrefix = "service-leaf:"
serviceConfigIDPrefix = "service-config:"
serviceResolverIDPrefix = "service-resolver:"
serviceIntentionsIDPrefix = "service-intentions:"
svcChecksWatchIDPrefix = cachetype.ServiceHTTPChecksName + ":"
serviceIDPrefix = string(structs.UpstreamDestTypeService) + ":"
preparedQueryIDPrefix = string(structs.UpstreamDestTypePreparedQuery) + ":"
defaultPreparedQueryPollInterval = 30 * time.Second
)
// state holds all the state needed to maintain the config for a registered
// connect-proxy service. When a proxy registration is changed, the entire state
// is discarded and a new one created.
type state struct {
// logger, source and cache are required to be set before calling Watch.
logger hclog.Logger
source *structs.QuerySource
cache CacheNotifier
dnsConfig DNSConfig
serverSNIFn ServerSNIFunc
intentionDefaultAllow bool
// ctx and cancel store the context created during initWatches call
ctx context.Context
cancel func()
kind structs.ServiceKind
service string
proxyID structs.ServiceID
address string
port int
meta map[string]string
taggedAddresses map[string]structs.ServiceAddress
proxyCfg structs.ConnectProxyConfig
token string
ch chan cache.UpdateEvent
snapCh chan ConfigSnapshot
reqCh chan chan *ConfigSnapshot
}
type DNSConfig struct {
Domain string
AltDomain string
}
type ServerSNIFunc func(dc, nodeName string) string
func copyProxyConfig(ns *structs.NodeService) (structs.ConnectProxyConfig, error) {
if ns == nil {
return structs.ConnectProxyConfig{}, nil
}
// Copy the config map
proxyCfgRaw, err := copystructure.Copy(ns.Proxy)
if err != nil {
return structs.ConnectProxyConfig{}, err
}
proxyCfg, ok := proxyCfgRaw.(structs.ConnectProxyConfig)
if !ok {
return structs.ConnectProxyConfig{}, errors.New("failed to copy proxy config")
}
// we can safely modify these since we just copied them
for idx := range proxyCfg.Upstreams {
us := &proxyCfg.Upstreams[idx]
if us.DestinationType != structs.UpstreamDestTypePreparedQuery && us.DestinationNamespace == "" {
// default the upstreams target namespace to the namespace of the proxy
// doing this here prevents needing much more complex logic a bunch of other
// places and makes tracking these upstreams simpler as we can dedup them
// with the maps tracking upstream ids being watched.
proxyCfg.Upstreams[idx].DestinationNamespace = ns.EnterpriseMeta.NamespaceOrDefault()
}
}
return proxyCfg, nil
}
// newState populates the state struct by copying relevant fields from the
// NodeService and Token. We copy so that we can use them in a separate
// goroutine later without reasoning about races with the NodeService passed
// (especially for embedded fields like maps and slices).
//
// The returned state needs its required dependencies to be set before Watch
// can be called.
func newState(ns *structs.NodeService, token string) (*state, error) {
switch ns.Kind {
case structs.ServiceKindConnectProxy:
case structs.ServiceKindTerminatingGateway:
case structs.ServiceKindMeshGateway:
case structs.ServiceKindIngressGateway:
default:
return nil, errors.New("not a connect-proxy, terminating-gateway, mesh-gateway, or ingress-gateway")
}
proxyCfg, err := copyProxyConfig(ns)
if err != nil {
return nil, err
}
taggedAddresses := make(map[string]structs.ServiceAddress)
for k, v := range ns.TaggedAddresses {
taggedAddresses[k] = v
}
meta := make(map[string]string)
for k, v := range ns.Meta {
meta[k] = v
}
return &state{
kind: ns.Kind,
service: ns.Service,
proxyID: ns.CompoundServiceID(),
address: ns.Address,
port: ns.Port,
meta: meta,
taggedAddresses: taggedAddresses,
proxyCfg: proxyCfg,
token: token,
// 10 is fairly arbitrary here but allow for the 3 mandatory and a
// reasonable number of upstream watches to all deliver their initial
// messages in parallel without blocking the cache.Notify loops. It's not a
// huge deal if we do for a short period so we don't need to be more
// conservative to handle larger numbers of upstreams correctly but gives
// some head room for normal operation to be non-blocking in most typical
// cases.
ch: make(chan cache.UpdateEvent, 10),
snapCh: make(chan ConfigSnapshot, 1),
reqCh: make(chan chan *ConfigSnapshot, 1),
}, nil
}
// Watch initialized watches on all necessary cache data for the current proxy
// registration state and returns a chan to observe updates to the
// ConfigSnapshot that contains all necessary config state. The chan is closed
// when the state is Closed.
func (s *state) Watch() (<-chan ConfigSnapshot, error) {
s.ctx, s.cancel = context.WithCancel(context.Background())
err := s.initWatches()
if err != nil {
s.cancel()
return nil, err
}
go s.run()
return s.snapCh, nil
}
// Close discards the state and stops any long-running watches.
func (s *state) Close() error {
if s.cancel != nil {
s.cancel()
}
return nil
}
// initWatches sets up the watches needed for the particular service
func (s *state) initWatches() error {
switch s.kind {
case structs.ServiceKindConnectProxy:
return s.initWatchesConnectProxy()
case structs.ServiceKindTerminatingGateway:
return s.initWatchesTerminatingGateway()
case structs.ServiceKindMeshGateway:
return s.initWatchesMeshGateway()
case structs.ServiceKindIngressGateway:
return s.initWatchesIngressGateway()
default:
return fmt.Errorf("Unsupported service kind")
}
}
func (s *state) watchMeshGateway(ctx context.Context, dc string, upstreamID string) error {
return s.cache.Notify(ctx, cachetype.InternalServiceDumpName, &structs.ServiceDumpRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceKind: structs.ServiceKindMeshGateway,
UseServiceKind: true,
Source: *s.source,
EnterpriseMeta: *structs.DefaultEnterpriseMeta(),
}, "mesh-gateway:"+dc+":"+upstreamID, s.ch)
}
func (s *state) watchConnectProxyService(ctx context.Context, correlationId string, service string, dc string, filter string, entMeta *structs.EnterpriseMeta) error {
var finalMeta structs.EnterpriseMeta
finalMeta.Merge(entMeta)
return s.cache.Notify(ctx, cachetype.HealthServicesName, &structs.ServiceSpecificRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{
Token: s.token,
Filter: filter,
},
ServiceName: service,
Connect: true,
// Note that Identifier doesn't type-prefix for service any more as it's
// the default and makes metrics and other things much cleaner. It's
// simpler for us if we have the type to make things unambiguous.
Source: *s.source,
EnterpriseMeta: finalMeta,
}, correlationId, s.ch)
}
// initWatchesConnectProxy sets up the watches needed based on current proxy registration
// state.
func (s *state) initWatchesConnectProxy() error {
// Watch for root changes
err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, rootsWatchID, s.ch)
if err != nil {
return err
}
// Watch the leaf cert
err = s.cache.Notify(s.ctx, cachetype.ConnectCALeafName, &cachetype.ConnectCALeafRequest{
Datacenter: s.source.Datacenter,
Token: s.token,
Service: s.proxyCfg.DestinationServiceName,
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, leafWatchID, s.ch)
if err != nil {
return err
}
// Watch for intention updates
err = s.cache.Notify(s.ctx, cachetype.IntentionMatchName, &structs.IntentionQueryRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Match: &structs.IntentionQueryMatch{
Type: structs.IntentionMatchDestination,
Entries: []structs.IntentionMatchEntry{
{
Namespace: s.proxyID.NamespaceOrDefault(),
Name: s.proxyCfg.DestinationServiceName,
},
},
},
}, intentionsWatchID, s.ch)
if err != nil {
return err
}
// Watch for service check updates
err = s.cache.Notify(s.ctx, cachetype.ServiceHTTPChecksName, &cachetype.ServiceHTTPChecksRequest{
ServiceID: s.proxyCfg.DestinationServiceID,
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, svcChecksWatchIDPrefix+structs.ServiceIDString(s.proxyCfg.DestinationServiceID, &s.proxyID.EnterpriseMeta), s.ch)
if err != nil {
return err
}
// default the namespace to the namespace of this proxy service
currentNamespace := s.proxyID.NamespaceOrDefault()
// Watch for updates to service endpoints for all upstreams
for _, u := range s.proxyCfg.Upstreams {
dc := s.source.Datacenter
if u.Datacenter != "" {
dc = u.Datacenter
}
ns := currentNamespace
if u.DestinationNamespace != "" {
ns = u.DestinationNamespace
}
cfg, err := parseReducedUpstreamConfig(u.Config)
if err != nil {
// Don't hard fail on a config typo, just warn. We'll fall back on
// the plain discovery chain if there is an error so it's safe to
// continue.
s.logger.Warn("failed to parse upstream config",
"upstream", u.Identifier(),
"error", err,
)
}
switch u.DestinationType {
case structs.UpstreamDestTypePreparedQuery:
err = s.cache.Notify(s.ctx, cachetype.PreparedQueryName, &structs.PreparedQueryExecuteRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{Token: s.token, MaxAge: defaultPreparedQueryPollInterval},
QueryIDOrName: u.DestinationName,
Connect: true,
Source: *s.source,
}, "upstream:"+u.Identifier(), s.ch)
if err != nil {
return err
}
case structs.UpstreamDestTypeService:
fallthrough
case "": // Treat unset as the default Service type
err = s.cache.Notify(s.ctx, cachetype.CompiledDiscoveryChainName, &structs.DiscoveryChainRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Name: u.DestinationName,
EvaluateInDatacenter: dc,
EvaluateInNamespace: ns,
OverrideMeshGateway: s.proxyCfg.MeshGateway.OverlayWith(u.MeshGateway),
OverrideProtocol: cfg.Protocol,
OverrideConnectTimeout: cfg.ConnectTimeout(),
}, "discovery-chain:"+u.Identifier(), s.ch)
if err != nil {
return err
}
default:
return fmt.Errorf("unknown upstream type: %q", u.DestinationType)
}
}
return nil
}
// reducedProxyConfig represents the basic opaque config values that are now
// managed with the discovery chain but for backwards compatibility reasons
// should still affect how the proxy is configured.
//
// The full-blown config is agent/xds.UpstreamConfig
type reducedUpstreamConfig struct {
Protocol string `mapstructure:"protocol"`
ConnectTimeoutMs int `mapstructure:"connect_timeout_ms"`
}
func (c *reducedUpstreamConfig) ConnectTimeout() time.Duration {
return time.Duration(c.ConnectTimeoutMs) * time.Millisecond
}
func parseReducedUpstreamConfig(m map[string]interface{}) (reducedUpstreamConfig, error) {
var cfg reducedUpstreamConfig
err := mapstructure.WeakDecode(m, &cfg)
return cfg, err
}
// initWatchesTerminatingGateway sets up the initial watches needed based on the terminating-gateway registration
func (s *state) initWatchesTerminatingGateway() error {
// Watch for root changes
err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, rootsWatchID, s.ch)
if err != nil {
s.logger.Named(logging.TerminatingGateway).
Error("failed to register watch for root changes", "error", err)
return err
}
// Watch for the terminating-gateway's linked services
err = s.cache.Notify(s.ctx, cachetype.GatewayServicesName, &structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: s.service,
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, gatewayServicesWatchID, s.ch)
if err != nil {
s.logger.Named(logging.TerminatingGateway).
Error("failed to register watch for linked services", "error", err)
return err
}
return nil
}
// initWatchesMeshGateway sets up the watches needed based on the current mesh gateway registration
func (s *state) initWatchesMeshGateway() error {
// Watch for root changes
err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, rootsWatchID, s.ch)
if err != nil {
return err
}
// Watch for all services
err = s.cache.Notify(s.ctx, cachetype.CatalogServiceListName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
EnterpriseMeta: *structs.WildcardEnterpriseMeta(),
}, serviceListWatchID, s.ch)
if err != nil {
return err
}
if s.meta[structs.MetaWANFederationKey] == "1" {
// Conveniently we can just use this service meta attribute in one
// place here to set the machinery in motion and leave the conditional
// behavior out of the rest of the package.
err = s.cache.Notify(s.ctx, cachetype.FederationStateListMeshGatewaysName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, federationStateListGatewaysWatchID, s.ch)
if err != nil {
return err
}
err = s.cache.Notify(s.ctx, cachetype.HealthServicesName, &structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: structs.ConsulServiceName,
}, consulServerListWatchID, s.ch)
if err != nil {
return err
}
}
// Eventually we will have to watch connect enable instances for each service as well as the
// destination services themselves but those notifications will be setup later. However we
// cannot setup those watches until we know what the services are. from the service list
// watch above
err = s.cache.Notify(s.ctx, cachetype.CatalogDatacentersName, &structs.DatacentersRequest{
QueryOptions: structs.QueryOptions{Token: s.token, MaxAge: 30 * time.Second},
}, datacentersWatchID, s.ch)
if err != nil {
return err
}
// Once we start getting notified about the datacenters we will setup watches on the
// gateways within those other datacenters. We cannot do that here because we don't
// know what they are yet.
// Watch service-resolvers so we can setup service subset clusters
err = s.cache.Notify(s.ctx, cachetype.ConfigEntriesName, &structs.ConfigEntryQuery{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Kind: structs.ServiceResolver,
EnterpriseMeta: *structs.WildcardEnterpriseMeta(),
}, serviceResolversWatchID, s.ch)
if err != nil {
s.logger.Named(logging.MeshGateway).
Error("failed to register watch for service-resolver config entries", "error", err)
return err
}
return err
}
func (s *state) initWatchesIngressGateway() error {
// Watch for root changes
err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, rootsWatchID, s.ch)
if err != nil {
return err
}
// Watch this ingress gateway's config entry
err = s.cache.Notify(s.ctx, cachetype.ConfigEntryName, &structs.ConfigEntryQuery{
Kind: structs.IngressGateway,
Name: s.service,
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, gatewayConfigWatchID, s.ch)
if err != nil {
return err
}
// Watch the ingress-gateway's list of upstreams
err = s.cache.Notify(s.ctx, cachetype.GatewayServicesName, &structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: s.service,
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, gatewayServicesWatchID, s.ch)
if err != nil {
return err
}
return nil
}
func (s *state) initialConfigSnapshot() ConfigSnapshot {
snap := ConfigSnapshot{
Kind: s.kind,
Service: s.service,
ProxyID: s.proxyID,
Address: s.address,
Port: s.port,
ServiceMeta: s.meta,
TaggedAddresses: s.taggedAddresses,
Proxy: s.proxyCfg,
Datacenter: s.source.Datacenter,
ServerSNIFn: s.serverSNIFn,
IntentionDefaultAllow: s.intentionDefaultAllow,
}
switch s.kind {
case structs.ServiceKindConnectProxy:
snap.ConnectProxy.DiscoveryChain = make(map[string]*structs.CompiledDiscoveryChain)
snap.ConnectProxy.WatchedUpstreams = make(map[string]map[string]context.CancelFunc)
snap.ConnectProxy.WatchedUpstreamEndpoints = make(map[string]map[string]structs.CheckServiceNodes)
snap.ConnectProxy.WatchedGateways = make(map[string]map[string]context.CancelFunc)
snap.ConnectProxy.WatchedGatewayEndpoints = make(map[string]map[string]structs.CheckServiceNodes)
snap.ConnectProxy.WatchedServiceChecks = make(map[structs.ServiceID][]structs.CheckType)
snap.ConnectProxy.PreparedQueryEndpoints = make(map[string]structs.CheckServiceNodes)
case structs.ServiceKindTerminatingGateway:
snap.TerminatingGateway.WatchedServices = make(map[structs.ServiceName]context.CancelFunc)
snap.TerminatingGateway.WatchedIntentions = make(map[structs.ServiceName]context.CancelFunc)
snap.TerminatingGateway.Intentions = make(map[structs.ServiceName]structs.Intentions)
snap.TerminatingGateway.WatchedLeaves = make(map[structs.ServiceName]context.CancelFunc)
snap.TerminatingGateway.ServiceLeaves = make(map[structs.ServiceName]*structs.IssuedCert)
snap.TerminatingGateway.WatchedConfigs = make(map[structs.ServiceName]context.CancelFunc)
snap.TerminatingGateway.ServiceConfigs = make(map[structs.ServiceName]*structs.ServiceConfigResponse)
snap.TerminatingGateway.WatchedResolvers = make(map[structs.ServiceName]context.CancelFunc)
snap.TerminatingGateway.ServiceResolvers = make(map[structs.ServiceName]*structs.ServiceResolverConfigEntry)
snap.TerminatingGateway.ServiceResolversSet = make(map[structs.ServiceName]bool)
snap.TerminatingGateway.ServiceGroups = make(map[structs.ServiceName]structs.CheckServiceNodes)
snap.TerminatingGateway.GatewayServices = make(map[structs.ServiceName]structs.GatewayService)
snap.TerminatingGateway.HostnameServices = make(map[structs.ServiceName]structs.CheckServiceNodes)
case structs.ServiceKindMeshGateway:
snap.MeshGateway.WatchedServices = make(map[structs.ServiceName]context.CancelFunc)
snap.MeshGateway.WatchedDatacenters = make(map[string]context.CancelFunc)
snap.MeshGateway.ServiceGroups = make(map[structs.ServiceName]structs.CheckServiceNodes)
snap.MeshGateway.GatewayGroups = make(map[string]structs.CheckServiceNodes)
snap.MeshGateway.ServiceResolvers = make(map[structs.ServiceName]*structs.ServiceResolverConfigEntry)
snap.MeshGateway.HostnameDatacenters = make(map[string]structs.CheckServiceNodes)
// there is no need to initialize the map of service resolvers as we
// fully rebuild it every time we get updates
case structs.ServiceKindIngressGateway:
snap.IngressGateway.WatchedDiscoveryChains = make(map[string]context.CancelFunc)
snap.IngressGateway.DiscoveryChain = make(map[string]*structs.CompiledDiscoveryChain)
snap.IngressGateway.WatchedUpstreams = make(map[string]map[string]context.CancelFunc)
snap.IngressGateway.WatchedUpstreamEndpoints = make(map[string]map[string]structs.CheckServiceNodes)
snap.IngressGateway.WatchedGateways = make(map[string]map[string]context.CancelFunc)
snap.IngressGateway.WatchedGatewayEndpoints = make(map[string]map[string]structs.CheckServiceNodes)
}
return snap
}
func (s *state) run() {
// Close the channel we return from Watch when we stop so consumers can stop
// watching and clean up their goroutines. It's important we do this here and
// not in Close since this routine sends on this chan and so might panic if it
// gets closed from another goroutine.
defer close(s.snapCh)
snap := s.initialConfigSnapshot()
// This turns out to be really fiddly/painful by just using time.Timer.C
// directly in the code below since you can't detect when a timer is stopped
// vs waiting in order to know to reset it. So just use a chan to send
// ourselves messages.
sendCh := make(chan struct{})
var coalesceTimer *time.Timer
for {
select {
case <-s.ctx.Done():
return
case u := <-s.ch:
if err := s.handleUpdate(u, &snap); err != nil {
s.logger.Error("watch error",
"id", u.CorrelationID,
"error", err,
)
continue
}
case <-sendCh:
// Make a deep copy of snap so we don't mutate any of the embedded structs
// etc on future updates.
snapCopy, err := snap.Clone()
if err != nil {
s.logger.Error("Failed to copy config snapshot for proxy",
"proxy", s.proxyID,
"error", err,
)
continue
}
s.snapCh <- *snapCopy
// Allow the next change to trigger a send
coalesceTimer = nil
// Skip rest of loop - there is nothing to send since nothing changed on
// this iteration
continue
case replyCh := <-s.reqCh:
if !snap.Valid() {
// Not valid yet just respond with nil and move on to next task.
replyCh <- nil
continue
}
// Make a deep copy of snap so we don't mutate any of the embedded structs
// etc on future updates.
snapCopy, err := snap.Clone()
if err != nil {
s.logger.Error("Failed to copy config snapshot for proxy",
"proxy", s.proxyID,
"error", err,
)
continue
}
replyCh <- snapCopy
// Skip rest of loop - there is nothing to send since nothing changed on
// this iteration
continue
}
// Check if snap is complete enough to be a valid config to deliver to a
// proxy yet.
if snap.Valid() {
// Don't send it right away, set a short timer that will wait for updates
// from any of the other cache values and deliver them all together.
if coalesceTimer == nil {
coalesceTimer = time.AfterFunc(coalesceTimeout, func() {
// This runs in another goroutine so we can't just do the send
// directly here as access to snap is racy. Instead, signal the main
// loop above.
sendCh <- struct{}{}
})
}
}
}
}
func (s *state) handleUpdate(u cache.UpdateEvent, snap *ConfigSnapshot) error {
switch s.kind {
case structs.ServiceKindConnectProxy:
return s.handleUpdateConnectProxy(u, snap)
case structs.ServiceKindTerminatingGateway:
return s.handleUpdateTerminatingGateway(u, snap)
case structs.ServiceKindMeshGateway:
return s.handleUpdateMeshGateway(u, snap)
case structs.ServiceKindIngressGateway:
return s.handleUpdateIngressGateway(u, snap)
default:
return fmt.Errorf("Unsupported service kind")
}
}
func (s *state) handleUpdateConnectProxy(u cache.UpdateEvent, snap *ConfigSnapshot) error {
if u.Err != nil {
return fmt.Errorf("error filling agent cache: %v", u.Err)
}
switch {
case u.CorrelationID == rootsWatchID:
roots, ok := u.Result.(*structs.IndexedCARoots)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.Roots = roots
case u.CorrelationID == intentionsWatchID:
resp, ok := u.Result.(*structs.IndexedIntentionMatches)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
if len(resp.Matches) > 0 {
// RPC supports matching multiple services at once but we only ever
// query with the one service we represent currently so just pick
// the one result set up.
snap.ConnectProxy.Intentions = resp.Matches[0]
}
snap.ConnectProxy.IntentionsSet = true
case strings.HasPrefix(u.CorrelationID, "upstream:"+preparedQueryIDPrefix):
resp, ok := u.Result.(*structs.PreparedQueryExecuteResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
pq := strings.TrimPrefix(u.CorrelationID, "upstream:")
snap.ConnectProxy.PreparedQueryEndpoints[pq] = resp.Nodes
case strings.HasPrefix(u.CorrelationID, svcChecksWatchIDPrefix):
resp, ok := u.Result.([]structs.CheckType)
if !ok {
return fmt.Errorf("invalid type for service checks response: %T, want: []structs.CheckType", u.Result)
}
svcID := structs.ServiceIDFromString(strings.TrimPrefix(u.CorrelationID, svcChecksWatchIDPrefix))
snap.ConnectProxy.WatchedServiceChecks[svcID] = resp
default:
return s.handleUpdateUpstreams(u, &snap.ConnectProxy.ConfigSnapshotUpstreams)
}
return nil
}
func (s *state) handleUpdateUpstreams(u cache.UpdateEvent, snap *ConfigSnapshotUpstreams) error {
if u.Err != nil {
return fmt.Errorf("error filling agent cache: %v", u.Err)
}
switch {
case u.CorrelationID == leafWatchID:
leaf, ok := u.Result.(*structs.IssuedCert)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.Leaf = leaf
case strings.HasPrefix(u.CorrelationID, "discovery-chain:"):
resp, ok := u.Result.(*structs.DiscoveryChainResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
svc := strings.TrimPrefix(u.CorrelationID, "discovery-chain:")
snap.DiscoveryChain[svc] = resp.Chain
if err := s.resetWatchesFromChain(svc, resp.Chain, snap); err != nil {
return err
}
case strings.HasPrefix(u.CorrelationID, "upstream-target:"):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
correlationID := strings.TrimPrefix(u.CorrelationID, "upstream-target:")
targetID, svc, ok := removeColonPrefix(correlationID)
if !ok {
return fmt.Errorf("invalid correlation id %q", u.CorrelationID)
}
if _, ok := snap.WatchedUpstreamEndpoints[svc]; !ok {
snap.WatchedUpstreamEndpoints[svc] = make(map[string]structs.CheckServiceNodes)
}
snap.WatchedUpstreamEndpoints[svc][targetID] = resp.Nodes
case strings.HasPrefix(u.CorrelationID, "mesh-gateway:"):
resp, ok := u.Result.(*structs.IndexedNodesWithGateways)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
correlationID := strings.TrimPrefix(u.CorrelationID, "mesh-gateway:")
dc, svc, ok := removeColonPrefix(correlationID)
if !ok {
return fmt.Errorf("invalid correlation id %q", u.CorrelationID)
}
if _, ok = snap.WatchedGatewayEndpoints[svc]; !ok {
snap.WatchedGatewayEndpoints[svc] = make(map[string]structs.CheckServiceNodes)
}
snap.WatchedGatewayEndpoints[svc][dc] = resp.Nodes
default:
return fmt.Errorf("unknown correlation ID: %s", u.CorrelationID)
}
return nil
}
func removeColonPrefix(s string) (string, string, bool) {
idx := strings.Index(s, ":")
if idx == -1 {
return "", "", false
}
return s[0:idx], s[idx+1:], true
}
func (s *state) resetWatchesFromChain(
id string,
chain *structs.CompiledDiscoveryChain,
snap *ConfigSnapshotUpstreams,
) error {
s.logger.Trace("resetting watches for discovery chain", "id", id)
if chain == nil {
return fmt.Errorf("not possible to arrive here with no discovery chain")
}
// Initialize relevant sub maps.
if _, ok := snap.WatchedUpstreams[id]; !ok {
snap.WatchedUpstreams[id] = make(map[string]context.CancelFunc)
}
if _, ok := snap.WatchedUpstreamEndpoints[id]; !ok {
snap.WatchedUpstreamEndpoints[id] = make(map[string]structs.CheckServiceNodes)
}
if _, ok := snap.WatchedGateways[id]; !ok {
snap.WatchedGateways[id] = make(map[string]context.CancelFunc)
}
if _, ok := snap.WatchedGatewayEndpoints[id]; !ok {
snap.WatchedGatewayEndpoints[id] = make(map[string]structs.CheckServiceNodes)
}
// We could invalidate this selectively based on a hash of the relevant
// resolver information, but for now just reset anything about this
// upstream when the chain changes in any way.
//
// TODO(rb): content hash based add/remove
for targetID, cancelFn := range snap.WatchedUpstreams[id] {
s.logger.Trace("stopping watch of target",
"upstream", id,
"chain", chain.ServiceName,
"target", targetID,
)
delete(snap.WatchedUpstreams[id], targetID)
delete(snap.WatchedUpstreamEndpoints[id], targetID)
cancelFn()
}
needGateways := make(map[string]struct{})
for _, target := range chain.Targets {
s.logger.Trace("initializing watch of target",
"upstream", id,
"chain", chain.ServiceName,
"target", target.ID,
"mesh-gateway-mode", target.MeshGateway.Mode,
)
// We'll get endpoints from the gateway query, but the health still has
// to come from the backing service query.
switch target.MeshGateway.Mode {
case structs.MeshGatewayModeRemote:
needGateways[target.Datacenter] = struct{}{}
case structs.MeshGatewayModeLocal:
needGateways[s.source.Datacenter] = struct{}{}
}
ctx, cancel := context.WithCancel(s.ctx)
err := s.watchConnectProxyService(
ctx,
"upstream-target:"+target.ID+":"+id,
target.Service,
target.Datacenter,
target.Subset.Filter,
target.GetEnterpriseMetadata(),
)
if err != nil {
cancel()
return err
}
snap.WatchedUpstreams[id][target.ID] = cancel
}
for dc := range needGateways {
if _, ok := snap.WatchedGateways[id][dc]; ok {
continue
}
s.logger.Trace("initializing watch of mesh gateway in datacenter",
"upstream", id,
"chain", chain.ServiceName,
"datacenter", dc,
)
ctx, cancel := context.WithCancel(s.ctx)
err := s.watchMeshGateway(ctx, dc, id)
if err != nil {
cancel()
return err
}
snap.WatchedGateways[id][dc] = cancel
}
for dc, cancelFn := range snap.WatchedGateways[id] {
if _, ok := needGateways[dc]; ok {
continue
}
s.logger.Trace("stopping watch of mesh gateway in datacenter",
"upstream", id,
"chain", chain.ServiceName,
"datacenter", dc,
)
delete(snap.WatchedGateways[id], dc)
delete(snap.WatchedGatewayEndpoints[id], dc)
cancelFn()
}
return nil
}
func (s *state) handleUpdateTerminatingGateway(u cache.UpdateEvent, snap *ConfigSnapshot) error {
if u.Err != nil {
return fmt.Errorf("error filling agent cache: %v", u.Err)
}
logger := s.logger.Named(logging.TerminatingGateway)
switch {
case u.CorrelationID == rootsWatchID:
roots, ok := u.Result.(*structs.IndexedCARoots)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.Roots = roots
// Update watches based on the current list of services associated with the terminating-gateway
case u.CorrelationID == gatewayServicesWatchID:
services, ok := u.Result.(*structs.IndexedGatewayServices)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
svcMap := make(map[structs.ServiceName]struct{})
for _, svc := range services.Services {
// Make sure to add every service to this map, we use it to cancel watches below.
svcMap[svc.Service] = struct{}{}
// Store the gateway <-> service mapping for TLS origination
snap.TerminatingGateway.GatewayServices[svc.Service] = *svc
// Watch the health endpoint to discover endpoints for the service
if _, ok := snap.TerminatingGateway.WatchedServices[svc.Service]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.HealthServicesName, &structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: svc.Service.Name,
EnterpriseMeta: svc.Service.EnterpriseMeta,
// The gateway acts as the service's proxy, so we do NOT want to discover other proxies
Connect: false,
}, externalServiceIDPrefix+svc.Service.String(), s.ch)
if err != nil {
logger.Error("failed to register watch for external-service",
"service", svc.Service.String(),
"error", err,
)
cancel()
return err
}
snap.TerminatingGateway.WatchedServices[svc.Service] = cancel
}
// Watch intentions with this service as their destination
// The gateway will enforce intentions for connections to the service
if _, ok := snap.TerminatingGateway.WatchedIntentions[svc.Service]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.IntentionMatchName, &structs.IntentionQueryRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Match: &structs.IntentionQueryMatch{
Type: structs.IntentionMatchDestination,
Entries: []structs.IntentionMatchEntry{
{
Namespace: svc.Service.NamespaceOrDefault(),
Name: svc.Service.Name,
},
},
},
}, serviceIntentionsIDPrefix+svc.Service.String(), s.ch)
if err != nil {
logger.Error("failed to register watch for service-intentions",
"service", svc.Service.String(),
"error", err,
)
cancel()
return err
}
snap.TerminatingGateway.WatchedIntentions[svc.Service] = cancel
}
// Watch leaf certificate for the service
// This cert is used to terminate mTLS connections on the service's behalf
if _, ok := snap.TerminatingGateway.WatchedLeaves[svc.Service]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.ConnectCALeafName, &cachetype.ConnectCALeafRequest{
Datacenter: s.source.Datacenter,
Token: s.token,
Service: svc.Service.Name,
EnterpriseMeta: svc.Service.EnterpriseMeta,
}, serviceLeafIDPrefix+svc.Service.String(), s.ch)
if err != nil {
logger.Error("failed to register watch for a service-leaf",
"service", svc.Service.String(),
"error", err,
)
cancel()
return err
}
snap.TerminatingGateway.WatchedLeaves[svc.Service] = cancel
}
// Watch service configs for the service.
// These are used to determine the protocol for the target service.
if _, ok := snap.TerminatingGateway.WatchedConfigs[svc.Service]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.ResolvedServiceConfigName, &structs.ServiceConfigRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Name: svc.Service.Name,
EnterpriseMeta: svc.Service.EnterpriseMeta,
}, serviceConfigIDPrefix+svc.Service.String(), s.ch)
if err != nil {
logger.Error("failed to register watch for a resolved service config",
"service", svc.Service.String(),
"error", err,
)
cancel()
return err
}
snap.TerminatingGateway.WatchedConfigs[svc.Service] = cancel
}
// Watch service resolvers for the service
// These are used to create clusters and endpoints for the service subsets
if _, ok := snap.TerminatingGateway.WatchedResolvers[svc.Service]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.ConfigEntriesName, &structs.ConfigEntryQuery{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Kind: structs.ServiceResolver,
Name: svc.Service.Name,
EnterpriseMeta: svc.Service.EnterpriseMeta,
}, serviceResolverIDPrefix+svc.Service.String(), s.ch)
if err != nil {
logger.Error("failed to register watch for a service-resolver",
"service", svc.Service.String(),
"error", err,
)
cancel()
return err
}
snap.TerminatingGateway.WatchedResolvers[svc.Service] = cancel
}
}
// Delete gateway service mapping for services that were not in the update
for sn := range snap.TerminatingGateway.GatewayServices {
if _, ok := svcMap[sn]; !ok {
delete(snap.TerminatingGateway.GatewayServices, sn)
}
}
// Clean up services with hostname mapping for services that were not in the update
for sn := range snap.TerminatingGateway.HostnameServices {
if _, ok := svcMap[sn]; !ok {
delete(snap.TerminatingGateway.HostnameServices, sn)
}
}
// Cancel service instance watches for services that were not in the update
for sn, cancelFn := range snap.TerminatingGateway.WatchedServices {
if _, ok := svcMap[sn]; !ok {
logger.Debug("canceling watch for service", "service", sn.String())
delete(snap.TerminatingGateway.WatchedServices, sn)
delete(snap.TerminatingGateway.ServiceGroups, sn)
cancelFn()
}
}
// Cancel leaf cert watches for services that were not in the update
for sn, cancelFn := range snap.TerminatingGateway.WatchedLeaves {
if _, ok := svcMap[sn]; !ok {
logger.Debug("canceling watch for leaf cert", "service", sn.String())
delete(snap.TerminatingGateway.WatchedLeaves, sn)
delete(snap.TerminatingGateway.ServiceLeaves, sn)
cancelFn()
}
}
// Cancel service config watches for services that were not in the update
for sn, cancelFn := range snap.TerminatingGateway.WatchedConfigs {
if _, ok := svcMap[sn]; !ok {
logger.Debug("canceling watch for resolved service config", "service", sn.String())
delete(snap.TerminatingGateway.WatchedConfigs, sn)
delete(snap.TerminatingGateway.ServiceConfigs, sn)
cancelFn()
}
}
// Cancel service-resolver watches for services that were not in the update
for sn, cancelFn := range snap.TerminatingGateway.WatchedResolvers {
if _, ok := svcMap[sn]; !ok {
logger.Debug("canceling watch for service-resolver", "service", sn.String())
delete(snap.TerminatingGateway.WatchedResolvers, sn)
delete(snap.TerminatingGateway.ServiceResolvers, sn)
delete(snap.TerminatingGateway.ServiceResolversSet, sn)
cancelFn()
}
}
// Cancel intention watches for services that were not in the update
for sn, cancelFn := range snap.TerminatingGateway.WatchedIntentions {
if _, ok := svcMap[sn]; !ok {
logger.Debug("canceling watch for intention", "service", sn.String())
delete(snap.TerminatingGateway.WatchedIntentions, sn)
delete(snap.TerminatingGateway.Intentions, sn)
cancelFn()
}
}
case strings.HasPrefix(u.CorrelationID, externalServiceIDPrefix):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, externalServiceIDPrefix))
delete(snap.TerminatingGateway.ServiceGroups, sn)
delete(snap.TerminatingGateway.HostnameServices, sn)
if len(resp.Nodes) > 0 {
snap.TerminatingGateway.ServiceGroups[sn] = resp.Nodes
snap.TerminatingGateway.HostnameServices[sn] = s.hostnameEndpoints(logging.TerminatingGateway, snap.Datacenter, resp.Nodes)
}
// Store leaf cert for watched service
case strings.HasPrefix(u.CorrelationID, serviceLeafIDPrefix):
leaf, ok := u.Result.(*structs.IssuedCert)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceLeafIDPrefix))
snap.TerminatingGateway.ServiceLeaves[sn] = leaf
case strings.HasPrefix(u.CorrelationID, serviceConfigIDPrefix):
serviceConfig, ok := u.Result.(*structs.ServiceConfigResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceConfigIDPrefix))
snap.TerminatingGateway.ServiceConfigs[sn] = serviceConfig
case strings.HasPrefix(u.CorrelationID, serviceResolverIDPrefix):
configEntries, ok := u.Result.(*structs.IndexedConfigEntries)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceResolverIDPrefix))
// There should only ever be one entry for a service resolver within a namespace
if len(configEntries.Entries) == 1 {
if resolver, ok := configEntries.Entries[0].(*structs.ServiceResolverConfigEntry); ok {
snap.TerminatingGateway.ServiceResolvers[sn] = resolver
}
}
snap.TerminatingGateway.ServiceResolversSet[sn] = true
case strings.HasPrefix(u.CorrelationID, serviceIntentionsIDPrefix):
resp, ok := u.Result.(*structs.IndexedIntentionMatches)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceIntentionsIDPrefix))
if len(resp.Matches) > 0 {
// RPC supports matching multiple services at once but we only ever
// query with the one service we represent currently so just pick
// the one result set up.
snap.TerminatingGateway.Intentions[sn] = resp.Matches[0]
}
default:
// do nothing
}
return nil
}
func (s *state) handleUpdateMeshGateway(u cache.UpdateEvent, snap *ConfigSnapshot) error {
if u.Err != nil {
return fmt.Errorf("error filling agent cache: %v", u.Err)
}
meshLogger := s.logger.Named(logging.MeshGateway)
switch u.CorrelationID {
case rootsWatchID:
roots, ok := u.Result.(*structs.IndexedCARoots)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.Roots = roots
case federationStateListGatewaysWatchID:
dcIndexedNodes, ok := u.Result.(*structs.DatacenterIndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.MeshGateway.FedStateGateways = dcIndexedNodes.DatacenterNodes
for dc, nodes := range dcIndexedNodes.DatacenterNodes {
snap.MeshGateway.HostnameDatacenters[dc] = s.hostnameEndpoints(logging.MeshGateway, snap.Datacenter, nodes)
}
for dc := range snap.MeshGateway.HostnameDatacenters {
if _, ok := dcIndexedNodes.DatacenterNodes[dc]; !ok {
delete(snap.MeshGateway.HostnameDatacenters, dc)
}
}
case serviceListWatchID:
services, ok := u.Result.(*structs.IndexedServiceList)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
svcMap := make(map[structs.ServiceName]struct{})
for _, svc := range services.Services {
// Make sure to add every service to this map, we use it to cancel
// watches below.
svcMap[svc] = struct{}{}
if _, ok := snap.MeshGateway.WatchedServices[svc]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.HealthServicesName, &structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: svc.Name,
Connect: true,
EnterpriseMeta: svc.EnterpriseMeta,
}, fmt.Sprintf("connect-service:%s", svc.String()), s.ch)
if err != nil {
meshLogger.Error("failed to register watch for connect-service",
"service", svc.String(),
"error", err,
)
cancel()
return err
}
snap.MeshGateway.WatchedServices[svc] = cancel
}
}
for sid, cancelFn := range snap.MeshGateway.WatchedServices {
if _, ok := svcMap[sid]; !ok {
meshLogger.Debug("canceling watch for service", "service", sid.String())
// TODO (gateways) Should the sid also be deleted from snap.MeshGateway.ServiceGroups?
// Do those endpoints get cleaned up some other way?
delete(snap.MeshGateway.WatchedServices, sid)
cancelFn()
}
}
snap.MeshGateway.WatchedServicesSet = true
case datacentersWatchID:
datacentersRaw, ok := u.Result.(*[]string)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
if datacentersRaw == nil {
return fmt.Errorf("invalid response with a nil datacenter list")
}
datacenters := *datacentersRaw
for _, dc := range datacenters {
if dc == s.source.Datacenter {
continue
}
if _, ok := snap.MeshGateway.WatchedDatacenters[dc]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.InternalServiceDumpName, &structs.ServiceDumpRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceKind: structs.ServiceKindMeshGateway,
UseServiceKind: true,
Source: *s.source,
EnterpriseMeta: *structs.DefaultEnterpriseMeta(),
}, fmt.Sprintf("mesh-gateway:%s", dc), s.ch)
if err != nil {
meshLogger.Error("failed to register watch for mesh-gateway",
"datacenter", dc,
"error", err,
)
cancel()
return err
}
snap.MeshGateway.WatchedDatacenters[dc] = cancel
}
}
for dc, cancelFn := range snap.MeshGateway.WatchedDatacenters {
found := false
for _, dcCurrent := range datacenters {
if dcCurrent == dc {
found = true
break
}
}
if !found {
delete(snap.MeshGateway.WatchedDatacenters, dc)
cancelFn()
}
}
case serviceResolversWatchID:
configEntries, ok := u.Result.(*structs.IndexedConfigEntries)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
resolvers := make(map[structs.ServiceName]*structs.ServiceResolverConfigEntry)
for _, entry := range configEntries.Entries {
if resolver, ok := entry.(*structs.ServiceResolverConfigEntry); ok {
resolvers[structs.NewServiceName(resolver.Name, &resolver.EnterpriseMeta)] = resolver
}
}
snap.MeshGateway.ServiceResolvers = resolvers
case consulServerListWatchID:
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
// Do some initial sanity checks to avoid doing something dumb.
for _, csn := range resp.Nodes {
if csn.Service.Service != structs.ConsulServiceName {
return fmt.Errorf("expected service name %q but got %q",
structs.ConsulServiceName, csn.Service.Service)
}
if csn.Node.Datacenter != snap.Datacenter {
return fmt.Errorf("expected datacenter %q but got %q",
snap.Datacenter, csn.Node.Datacenter)
}
}
snap.MeshGateway.ConsulServers = resp.Nodes
default:
switch {
case strings.HasPrefix(u.CorrelationID, "connect-service:"):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, "connect-service:"))
if len(resp.Nodes) > 0 {
snap.MeshGateway.ServiceGroups[sn] = resp.Nodes
} else if _, ok := snap.MeshGateway.ServiceGroups[sn]; ok {
delete(snap.MeshGateway.ServiceGroups, sn)
}
case strings.HasPrefix(u.CorrelationID, "mesh-gateway:"):
resp, ok := u.Result.(*structs.IndexedNodesWithGateways)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
dc := strings.TrimPrefix(u.CorrelationID, "mesh-gateway:")
delete(snap.MeshGateway.GatewayGroups, dc)
delete(snap.MeshGateway.HostnameDatacenters, dc)
if len(resp.Nodes) > 0 {
snap.MeshGateway.GatewayGroups[dc] = resp.Nodes
snap.MeshGateway.HostnameDatacenters[dc] = s.hostnameEndpoints(logging.MeshGateway, snap.Datacenter, resp.Nodes)
}
default:
// do nothing for now
}
}
return nil
}
func (s *state) handleUpdateIngressGateway(u cache.UpdateEvent, snap *ConfigSnapshot) error {
if u.Err != nil {
return fmt.Errorf("error filling agent cache: %v", u.Err)
}
switch {
case u.CorrelationID == rootsWatchID:
roots, ok := u.Result.(*structs.IndexedCARoots)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.Roots = roots
case u.CorrelationID == gatewayConfigWatchID:
resp, ok := u.Result.(*structs.ConfigEntryResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
gatewayConf, ok := resp.Entry.(*structs.IngressGatewayConfigEntry)
if !ok {
return fmt.Errorf("invalid type for config entry: %T", resp.Entry)
}
snap.IngressGateway.TLSEnabled = gatewayConf.TLS.Enabled
snap.IngressGateway.TLSSet = true
if err := s.watchIngressLeafCert(snap); err != nil {
return err
}
case u.CorrelationID == gatewayServicesWatchID:
services, ok := u.Result.(*structs.IndexedGatewayServices)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
// Update our upstreams and watches.
var hosts []string
watchedSvcs := make(map[string]struct{})
upstreamsMap := make(map[IngressListenerKey]structs.Upstreams)
for _, service := range services.Services {
u := makeUpstream(service)
err := s.watchIngressDiscoveryChain(snap, u)
if err != nil {
return err
}
watchedSvcs[u.Identifier()] = struct{}{}
hosts = append(hosts, service.Hosts...)
id := IngressListenerKey{Protocol: service.Protocol, Port: service.Port}
upstreamsMap[id] = append(upstreamsMap[id], u)
}
snap.IngressGateway.Upstreams = upstreamsMap
snap.IngressGateway.Hosts = hosts
snap.IngressGateway.HostsSet = true
for id, cancelFn := range snap.IngressGateway.WatchedDiscoveryChains {
if _, ok := watchedSvcs[id]; !ok {
cancelFn()
delete(snap.IngressGateway.WatchedDiscoveryChains, id)
}
}
if err := s.watchIngressLeafCert(snap); err != nil {
return err
}
default:
return s.handleUpdateUpstreams(u, &snap.IngressGateway.ConfigSnapshotUpstreams)
}
return nil
}
func makeUpstream(g *structs.GatewayService) structs.Upstream {
upstream := structs.Upstream{
DestinationName: g.Service.Name,
DestinationNamespace: g.Service.NamespaceOrDefault(),
LocalBindPort: g.Port,
IngressHosts: g.Hosts,
// Pass the protocol that was configured on the ingress listener in order
// to force that protocol on the Envoy listener.
Config: map[string]interface{}{
"protocol": g.Protocol,
},
}
return upstream
}
func (s *state) watchIngressDiscoveryChain(snap *ConfigSnapshot, u structs.Upstream) error {
if _, ok := snap.IngressGateway.WatchedDiscoveryChains[u.Identifier()]; ok {
return nil
}
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.CompiledDiscoveryChainName, &structs.DiscoveryChainRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Name: u.DestinationName,
EvaluateInDatacenter: s.source.Datacenter,
EvaluateInNamespace: u.DestinationNamespace,
}, "discovery-chain:"+u.Identifier(), s.ch)
if err != nil {
cancel()
return err
}
snap.IngressGateway.WatchedDiscoveryChains[u.Identifier()] = cancel
return nil
}
func (s *state) generateIngressDNSSANs(snap *ConfigSnapshot) []string {
// Update our leaf cert watch with wildcard entries for our DNS domains as well as any
// configured custom hostnames from the service.
if !snap.IngressGateway.TLSEnabled {
return nil
}
var dnsNames []string
namespaces := make(map[string]struct{})
for _, upstreams := range snap.IngressGateway.Upstreams {
for _, u := range upstreams {
namespaces[u.DestinationNamespace] = struct{}{}
}
}
for ns := range namespaces {
// The default namespace is special cased in DNS resolution, so special
// case it here.
if ns == structs.IntentionDefaultNamespace {
ns = ""
} else {
ns = ns + "."
}
dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s", ns, s.dnsConfig.Domain))
dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s.%s", ns, s.source.Datacenter, s.dnsConfig.Domain))
if s.dnsConfig.AltDomain != "" {
dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s", ns, s.dnsConfig.AltDomain))
dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s.%s", ns, s.source.Datacenter, s.dnsConfig.AltDomain))
}
}
dnsNames = append(dnsNames, snap.IngressGateway.Hosts...)
return dnsNames
}
func (s *state) watchIngressLeafCert(snap *ConfigSnapshot) error {
if !snap.IngressGateway.TLSSet || !snap.IngressGateway.HostsSet {
return nil
}
// Watch the leaf cert
if snap.IngressGateway.LeafCertWatchCancel != nil {
snap.IngressGateway.LeafCertWatchCancel()
}
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.ConnectCALeafName, &cachetype.ConnectCALeafRequest{
Datacenter: s.source.Datacenter,
Token: s.token,
Service: s.service,
DNSSAN: s.generateIngressDNSSANs(snap),
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, leafWatchID, s.ch)
if err != nil {
cancel()
return err
}
snap.IngressGateway.LeafCertWatchCancel = cancel
return nil
}
// CurrentSnapshot synchronously returns the current ConfigSnapshot if there is
// one ready. If we don't have one yet because not all necessary parts have been
// returned (i.e. both roots and leaf cert), nil is returned.
func (s *state) CurrentSnapshot() *ConfigSnapshot {
// Make a chan for the response to be sent on
ch := make(chan *ConfigSnapshot, 1)
s.reqCh <- ch
// Wait for the response
return <-ch
}
// Changed returns whether or not the passed NodeService has had any of the
// fields we care about for config state watching changed or a different token.
func (s *state) Changed(ns *structs.NodeService, token string) bool {
if ns == nil {
return true
}
proxyCfg, err := copyProxyConfig(ns)
if err != nil {
s.logger.Warn("Failed to parse proxy config and will treat the new service as unchanged")
}
return ns.Kind != s.kind ||
s.proxyID != ns.CompoundServiceID() ||
s.address != ns.Address ||
s.port != ns.Port ||
!reflect.DeepEqual(s.proxyCfg, proxyCfg) ||
s.token != token
}
// hostnameEndpoints returns all CheckServiceNodes that have hostnames instead of IPs as the address.
// Envoy cannot resolve hostnames provided through EDS, so we exclusively use CDS for these clusters.
// If there is a mix of hostnames and addresses we exclusively use the hostnames, since clusters cannot discover
// services with both EDS and DNS.
func (s *state) hostnameEndpoints(loggerName string, localDC string, nodes structs.CheckServiceNodes) structs.CheckServiceNodes {
var (
hasIP bool
hasHostname bool
resp structs.CheckServiceNodes
)
for _, n := range nodes {
addr, _ := n.BestAddress(localDC != n.Node.Datacenter)
if net.ParseIP(addr) != nil {
hasIP = true
continue
}
hasHostname = true
resp = append(resp, n)
}
if hasHostname && hasIP {
dc := nodes[0].Node.Datacenter
sn := nodes[0].Service.CompoundServiceName()
s.logger.Named(loggerName).
Warn("service contains instances with mix of hostnames and IP addresses; only hostnames will be passed to Envoy",
"dc", dc, "service", sn.String())
}
return resp
}