consul/acl/policy_authorizer.go

1007 lines
30 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: BUSL-1.1
package acl
import (
"github.com/armon/go-radix"
)
type policyAuthorizer struct {
// aclRule contains the acl management policy.
aclRule *policyAuthorizerRule
// agentRules contain the exact-match agent policies
agentRules *radix.Tree
// identityRules contains the identity exact-match policies
identityRules *radix.Tree
// intentionRules contains the service intention exact-match policies
intentionRules *radix.Tree
// trafficPermissionsRules contains the service intention exact-match policies
trafficPermissionsRules *radix.Tree
// keyRules contains the key exact-match policies
keyRules *radix.Tree
// nodeRules contains the node exact-match policies
nodeRules *radix.Tree
// serviceRules contains the service exact-match policies
serviceRules *radix.Tree
// sessionRules contains the session exact-match policies
sessionRules *radix.Tree
// eventRules contains the user event exact-match policies
eventRules *radix.Tree
// preparedQueryRules contains the prepared query exact-match policies
preparedQueryRules *radix.Tree
// keyringRule contains the keyring policies. The keyring has
// a very simple yes/no without prefix matching, so here we
// don't need to use a radix tree.
keyringRule *policyAuthorizerRule
// operatorRule contains the operator policies.
operatorRule *policyAuthorizerRule
// meshRule contains the mesh policies.
meshRule *policyAuthorizerRule
// peeringRule contains the peering policies.
peeringRule *policyAuthorizerRule
// embedded enterprise policy authorizer
enterprisePolicyAuthorizer
}
// policyAuthorizerRule is a struct to hold an ACL policy decision along
// with extra Consul Enterprise specific policy
type policyAuthorizerRule struct {
// decision is the enforcement decision for this rule
access AccessLevel
// Embedded Consul Enterprise specific policy
EnterpriseRule
}
// policyAuthorizerRadixLeaf is used as the main
// structure for storing in the radix.Tree's within the
// PolicyAuthorizer
type policyAuthorizerRadixLeaf struct {
exact *policyAuthorizerRule
prefix *policyAuthorizerRule
}
// getPolicy first attempts to get an exact match for the segment from the "exact" tree and then falls
// back to getting the policy for the longest prefix from the "prefix" tree
func getPolicy(segment string, tree *radix.Tree) (policy *policyAuthorizerRule, found bool) {
found = false
tree.WalkPath(segment, func(path string, leaf interface{}) bool {
policies := leaf.(*policyAuthorizerRadixLeaf)
if policies.exact != nil && path == segment {
found = true
policy = policies.exact
return true
}
if policies.prefix != nil {
found = true
policy = policies.prefix
}
return false
})
return
}
// insertPolicyIntoRadix will insert or update part of the leaf node within the radix tree corresponding to the
// given segment. To update only one of the exact match or prefix match policy, set the value you want to leave alone
// to nil when calling the function.
func insertPolicyIntoRadix(segment string, policy string, ent *EnterpriseRule, tree *radix.Tree, prefix bool) error {
al, err := AccessLevelFromString(policy)
if err != nil {
return err
}
policyRule := policyAuthorizerRule{
access: al,
}
if ent != nil {
policyRule.EnterpriseRule = *ent
}
var policyLeaf *policyAuthorizerRadixLeaf
leaf, found := tree.Get(segment)
if found {
policyLeaf = leaf.(*policyAuthorizerRadixLeaf)
} else {
policyLeaf = &policyAuthorizerRadixLeaf{}
tree.Insert(segment, policyLeaf)
}
if prefix {
policyLeaf.prefix = &policyRule
} else {
policyLeaf.exact = &policyRule
}
return nil
}
// enforce is a convenience function to
func enforce(rule AccessLevel, requiredPermission AccessLevel) EnforcementDecision {
switch rule {
case AccessWrite:
// grants read, list and write permissions
return Allow
case AccessList:
// grants read and list permissions
if requiredPermission == AccessList || requiredPermission == AccessRead {
return Allow
} else {
return Deny
}
case AccessRead:
// grants just read permissions
if requiredPermission == AccessRead {
return Allow
} else {
return Deny
}
case AccessDeny:
// explicit denial - do not recurse
return Deny
default:
// need to recurse as there was no specific access level set
return Default
}
}
func defaultIsAllow(decision EnforcementDecision) EnforcementDecision {
switch decision {
case Allow, Default:
return Allow
default:
return Deny
}
}
func (p *policyAuthorizer) loadRules(policy *PolicyRules) error {
// Load the agent policy (exact matches)
for _, ap := range policy.Agents {
if err := insertPolicyIntoRadix(ap.Node, ap.Policy, nil, p.agentRules, false); err != nil {
return err
}
}
// Load the agent policy (prefix matches)
for _, ap := range policy.AgentPrefixes {
if err := insertPolicyIntoRadix(ap.Node, ap.Policy, nil, p.agentRules, true); err != nil {
return err
}
}
// Load the identity policy (exact matches)
for _, id := range policy.Identities {
if err := insertPolicyIntoRadix(id.Name, id.Policy, &id.EnterpriseRule, p.identityRules, false); err != nil {
return err
}
intention := id.Intentions
if intention == "" {
switch id.Policy {
case PolicyRead, PolicyWrite:
intention = PolicyRead
default:
intention = PolicyDeny
}
}
if err := insertPolicyIntoRadix(id.Name, intention, &id.EnterpriseRule, p.trafficPermissionsRules, false); err != nil {
return err
}
}
// Load the identity policy (prefix matches)
for _, id := range policy.IdentityPrefixes {
if err := insertPolicyIntoRadix(id.Name, id.Policy, &id.EnterpriseRule, p.identityRules, true); err != nil {
return err
}
intention := id.Intentions
if intention == "" {
switch id.Policy {
case PolicyRead, PolicyWrite:
intention = PolicyRead
default:
intention = PolicyDeny
}
}
if err := insertPolicyIntoRadix(id.Name, intention, &id.EnterpriseRule, p.trafficPermissionsRules, true); err != nil {
return err
}
}
// Load the key policy (exact matches)
for _, kp := range policy.Keys {
if err := insertPolicyIntoRadix(kp.Prefix, kp.Policy, &kp.EnterpriseRule, p.keyRules, false); err != nil {
return err
}
}
// Load the key policy (prefix matches)
for _, kp := range policy.KeyPrefixes {
if err := insertPolicyIntoRadix(kp.Prefix, kp.Policy, &kp.EnterpriseRule, p.keyRules, true); err != nil {
return err
}
}
// Load the node policy (exact matches)
for _, np := range policy.Nodes {
if err := insertPolicyIntoRadix(np.Name, np.Policy, &np.EnterpriseRule, p.nodeRules, false); err != nil {
return err
}
}
// Load the node policy (prefix matches)
for _, np := range policy.NodePrefixes {
if err := insertPolicyIntoRadix(np.Name, np.Policy, &np.EnterpriseRule, p.nodeRules, true); err != nil {
return err
}
}
// Load the service policy (exact matches)
for _, sp := range policy.Services {
if err := insertPolicyIntoRadix(sp.Name, sp.Policy, &sp.EnterpriseRule, p.serviceRules, false); err != nil {
return err
}
intention := sp.Intentions
if intention == "" {
switch sp.Policy {
case PolicyRead, PolicyWrite:
intention = PolicyRead
default:
intention = PolicyDeny
}
}
if err := insertPolicyIntoRadix(sp.Name, intention, &sp.EnterpriseRule, p.intentionRules, false); err != nil {
return err
}
}
// Load the service policy (prefix matches)
for _, sp := range policy.ServicePrefixes {
if err := insertPolicyIntoRadix(sp.Name, sp.Policy, &sp.EnterpriseRule, p.serviceRules, true); err != nil {
return err
}
intention := sp.Intentions
if intention == "" {
switch sp.Policy {
case PolicyRead, PolicyWrite:
intention = PolicyRead
default:
intention = PolicyDeny
}
}
if err := insertPolicyIntoRadix(sp.Name, intention, &sp.EnterpriseRule, p.intentionRules, true); err != nil {
return err
}
}
// Load the session policy (exact matches)
for _, sp := range policy.Sessions {
if err := insertPolicyIntoRadix(sp.Node, sp.Policy, nil, p.sessionRules, false); err != nil {
return err
}
}
// Load the session policy (prefix matches)
for _, sp := range policy.SessionPrefixes {
if err := insertPolicyIntoRadix(sp.Node, sp.Policy, nil, p.sessionRules, true); err != nil {
return err
}
}
// Load the event policy (exact matches)
for _, ep := range policy.Events {
if err := insertPolicyIntoRadix(ep.Event, ep.Policy, nil, p.eventRules, false); err != nil {
return err
}
}
// Load the event policy (prefix matches)
for _, ep := range policy.EventPrefixes {
if err := insertPolicyIntoRadix(ep.Event, ep.Policy, nil, p.eventRules, true); err != nil {
return err
}
}
// Load the prepared query policy (exact matches)
for _, qp := range policy.PreparedQueries {
if err := insertPolicyIntoRadix(qp.Prefix, qp.Policy, nil, p.preparedQueryRules, false); err != nil {
return err
}
}
// Load the prepared query policy (prefix matches)
for _, qp := range policy.PreparedQueryPrefixes {
if err := insertPolicyIntoRadix(qp.Prefix, qp.Policy, nil, p.preparedQueryRules, true); err != nil {
return err
}
}
// Load the acl policy
if policy.ACL != "" {
access, err := AccessLevelFromString(policy.ACL)
if err != nil {
return err
}
p.aclRule = &policyAuthorizerRule{access: access}
}
// Load the keyring policy
if policy.Keyring != "" {
access, err := AccessLevelFromString(policy.Keyring)
if err != nil {
return err
}
p.keyringRule = &policyAuthorizerRule{access: access}
}
// Load the operator policy
if policy.Operator != "" {
access, err := AccessLevelFromString(policy.Operator)
if err != nil {
return err
}
p.operatorRule = &policyAuthorizerRule{access: access}
}
// Load the mesh policy
if policy.Mesh != "" {
access, err := AccessLevelFromString(policy.Mesh)
if err != nil {
return err
}
p.meshRule = &policyAuthorizerRule{access: access}
}
// Load the peering policy
if policy.Peering != "" {
access, err := AccessLevelFromString(policy.Peering)
if err != nil {
return err
}
p.peeringRule = &policyAuthorizerRule{access: access}
}
return nil
}
func newPolicyAuthorizer(policies []*Policy, ent *Config) (*policyAuthorizer, error) {
policy := MergePolicies(policies)
return newPolicyAuthorizerFromRules(&policy.PolicyRules, ent)
}
func newPolicyAuthorizerFromRules(rules *PolicyRules, ent *Config) (*policyAuthorizer, error) {
p := &policyAuthorizer{
agentRules: radix.New(),
identityRules: radix.New(),
intentionRules: radix.New(),
trafficPermissionsRules: radix.New(),
keyRules: radix.New(),
nodeRules: radix.New(),
serviceRules: radix.New(),
sessionRules: radix.New(),
eventRules: radix.New(),
preparedQueryRules: radix.New(),
}
p.enterprisePolicyAuthorizer.init(ent)
if err := p.loadRules(rules); err != nil {
return nil, err
}
return p, nil
}
// enforceCallbacks are to be passed to anyAllowed or allAllowed. The interface{}
// parameter will be a value stored in the radix.Tree passed to those functions.
// prefixOnly indicates that only we only want to consider the prefix matching rule
// if any. The return value indicates whether this one leaf node in the tree would
// allow, deny or make no decision regarding some authorization.
type enforceCallback func(raw interface{}, prefixOnly bool) EnforcementDecision
func anyAllowed(tree *radix.Tree, enforceFn enforceCallback) EnforcementDecision {
decision := Default
// special case for handling a catch-all prefix rule. If the rule would Deny access then our default decision
// should be to Deny, but this decision should still be overridable with other more specific rules.
if raw, found := tree.Get(""); found {
decision = enforceFn(raw, true)
if decision == Allow {
return Allow
}
}
tree.Walk(func(path string, raw interface{}) bool {
if enforceFn(raw, false) == Allow {
decision = Allow
return true
}
return false
})
return decision
}
func allAllowed(tree *radix.Tree, enforceFn enforceCallback) EnforcementDecision {
decision := Default
// look for a "" prefix rule
if raw, found := tree.Get(""); found {
// ensure that the empty prefix rule would allow the access
// if it does allow it we still must check all the other rules to ensure
// nothing overrides the top level grant with a different access level
// if not we can return early
decision = enforceFn(raw, true)
// the top level prefix rule denied access so we can return early.
if decision == Deny {
return Deny
}
}
tree.Walk(func(path string, raw interface{}) bool {
if enforceFn(raw, false) == Deny {
decision = Deny
return true
}
return false
})
return decision
}
func (authz *policyAuthorizer) anyAllowed(tree *radix.Tree, requiredPermission AccessLevel) EnforcementDecision {
return anyAllowed(tree, func(raw interface{}, prefixOnly bool) EnforcementDecision {
leaf := raw.(*policyAuthorizerRadixLeaf)
decision := Default
if leaf.prefix != nil {
decision = enforce(leaf.prefix.access, requiredPermission)
}
if prefixOnly || decision == Allow || leaf.exact == nil {
return decision
}
return enforce(leaf.exact.access, requiredPermission)
})
}
func (authz *policyAuthorizer) allAllowed(tree *radix.Tree, requiredPermission AccessLevel) EnforcementDecision {
return allAllowed(tree, func(raw interface{}, prefixOnly bool) EnforcementDecision {
leaf := raw.(*policyAuthorizerRadixLeaf)
prefixDecision := Default
if leaf.prefix != nil {
prefixDecision = enforce(leaf.prefix.access, requiredPermission)
}
if prefixOnly || prefixDecision == Deny || leaf.exact == nil {
return prefixDecision
}
decision := enforce(leaf.exact.access, requiredPermission)
if decision == Default {
// basically this means defer to the prefix decision as the
// authorizer rule made no decision with an exact match rule
return prefixDecision
}
return decision
})
}
// ACLRead checks if listing of ACLs is allowed
func (p *policyAuthorizer) ACLRead(*AuthorizerContext) EnforcementDecision {
if p.aclRule != nil {
return enforce(p.aclRule.access, AccessRead)
}
return Default
}
// ACLWrite checks if modification of ACLs is allowed
func (p *policyAuthorizer) ACLWrite(*AuthorizerContext) EnforcementDecision {
if p.aclRule != nil {
return enforce(p.aclRule.access, AccessWrite)
}
return Default
}
// AgentRead checks for permission to read from agent endpoints for a given
// node.
func (p *policyAuthorizer) AgentRead(node string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(node, p.agentRules); ok {
return enforce(rule.access, AccessRead)
}
return Default
}
// AgentWrite checks for permission to make changes via agent endpoints for a
// given node.
func (p *policyAuthorizer) AgentWrite(node string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(node, p.agentRules); ok {
return enforce(rule.access, AccessWrite)
}
return Default
}
// Snapshot checks if taking and restoring snapshots is allowed.
func (p *policyAuthorizer) Snapshot(_ *AuthorizerContext) EnforcementDecision {
if p.aclRule != nil {
return enforce(p.aclRule.access, AccessWrite)
}
return Default
}
// EventRead is used to determine if the policy allows for a
// specific user event to be read.
func (p *policyAuthorizer) EventRead(name string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(name, p.eventRules); ok {
return enforce(rule.access, AccessRead)
}
return Default
}
// EventWrite is used to determine if new events can be created
// (fired) by the policy.
func (p *policyAuthorizer) EventWrite(name string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(name, p.eventRules); ok {
return enforce(rule.access, AccessWrite)
}
return Default
}
// IdentityRead checks for permission to read a given workload identity.
func (p *policyAuthorizer) IdentityRead(name string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(name, p.identityRules); ok {
return enforce(rule.access, AccessRead)
}
return Default
}
// IdentityReadAll checks for permission to read all workload identities.
func (p *policyAuthorizer) IdentityReadAll(_ *AuthorizerContext) EnforcementDecision {
return p.allAllowed(p.identityRules, AccessRead)
}
// IdentityWrite checks for permission to create or update a given
// workload identity.
func (p *policyAuthorizer) IdentityWrite(name string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(name, p.identityRules); ok {
return enforce(rule.access, AccessWrite)
}
return Default
}
// IdentityWriteAny checks for write permission on any workload identity.
func (p *policyAuthorizer) IdentityWriteAny(_ *AuthorizerContext) EnforcementDecision {
return p.anyAllowed(p.identityRules, AccessWrite)
}
// IntentionDefaultAllow returns whether the default behavior when there are
// no matching intentions is to allow or deny.
func (p *policyAuthorizer) IntentionDefaultAllow(_ *AuthorizerContext) EnforcementDecision {
// We always go up, this can't be determined by a policy.
return Default
}
// IntentionRead checks if reading an intention is allowed.
func (p *policyAuthorizer) IntentionRead(prefix string, _ *AuthorizerContext) EnforcementDecision {
if prefix == "*" {
return p.anyAllowed(p.intentionRules, AccessRead)
}
if rule, ok := getPolicy(prefix, p.intentionRules); ok {
return enforce(rule.access, AccessRead)
}
return Default
}
// IntentionWrite checks if writing (creating, updating, or deleting) of an
// intention is allowed.
func (p *policyAuthorizer) IntentionWrite(prefix string, _ *AuthorizerContext) EnforcementDecision {
if prefix == "*" {
return p.allAllowed(p.intentionRules, AccessWrite)
}
if rule, ok := getPolicy(prefix, p.intentionRules); ok {
return enforce(rule.access, AccessWrite)
}
return Default
}
// TrafficPermissionsRead checks if reading of traffic permissions is allowed.
func (p *policyAuthorizer) TrafficPermissionsRead(prefix string, _ *AuthorizerContext) EnforcementDecision {
if prefix == "*" {
return p.anyAllowed(p.trafficPermissionsRules, AccessRead)
}
if rule, ok := getPolicy(prefix, p.trafficPermissionsRules); ok {
return enforce(rule.access, AccessRead)
}
return Default
}
// TrafficPermissionsWrite checks if writing (creating, updating, or deleting) of traffic
// permissions is allowed.
func (p *policyAuthorizer) TrafficPermissionsWrite(prefix string, _ *AuthorizerContext) EnforcementDecision {
if prefix == "*" {
return p.allAllowed(p.trafficPermissionsRules, AccessWrite)
}
if rule, ok := getPolicy(prefix, p.trafficPermissionsRules); ok {
return enforce(rule.access, AccessWrite)
}
return Default
}
// KeyRead returns if a key is allowed to be read
func (p *policyAuthorizer) KeyRead(key string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(key, p.keyRules); ok {
return enforce(rule.access, AccessRead)
}
return Default
}
// KeyList returns if a key is allowed to be listed
func (p *policyAuthorizer) KeyList(key string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(key, p.keyRules); ok {
return enforce(rule.access, AccessList)
}
return Default
}
// KeyWrite returns if a key is allowed to be written
func (p *policyAuthorizer) KeyWrite(key string, entCtx *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(key, p.keyRules); ok {
decision := enforce(rule.access, AccessWrite)
if decision == Allow {
return defaultIsAllow(p.enterprisePolicyAuthorizer.enforce(&rule.EnterpriseRule, entCtx))
}
return decision
}
return Default
}
// KeyWritePrefix returns if a prefix is allowed to be written
//
// This is mainly used to detect whether a whole tree within
// the KV can be removed. For that reason we must be able to
// delete everything under the prefix. First we must have "write"
// on the prefix itself
func (p *policyAuthorizer) KeyWritePrefix(prefix string, _ *AuthorizerContext) EnforcementDecision {
// Conditions for Allow:
// * The longest prefix match rule that would apply to the given prefix
// grants AccessWrite
// AND
// * There are no rules (exact or prefix match) within/under the given prefix
// that would NOT grant AccessWrite.
//
// Conditions for Deny:
// * The longest prefix match rule that would apply to the given prefix
// does not grant AccessWrite.
// OR
// * There is 1+ rules (exact or prefix match) within/under the given prefix
// that do NOT grant AccessWrite.
//
// Conditions for Default:
// * There is no prefix match rule that would apply to the given prefix.
// AND
// * There are no rules (exact or prefix match) within/under the given prefix
// that would NOT grant AccessWrite.
baseAccess := Default
// Look for a prefix rule that would apply to the prefix we are checking
// WalkPath starts at the root and walks down to the given prefix.
// Therefore the last prefix rule we see is the one that matters
p.keyRules.WalkPath(prefix, func(path string, leaf interface{}) bool {
rule := leaf.(*policyAuthorizerRadixLeaf)
if rule.prefix != nil {
if rule.prefix.access != AccessWrite {
baseAccess = Deny
} else {
baseAccess = Allow
}
}
return false
})
// baseAccess will be Deny only when a prefix rule was found and it didn't
// grant AccessWrite. Otherwise the access level will be Default or Allow
// neither of which should be returned right now.
if baseAccess == Deny {
return baseAccess
}
// Look if any of our children do not allow write access. This loop takes
// into account both prefix and exact match rules.
withinPrefixAccess := Default
p.keyRules.WalkPrefix(prefix, func(path string, leaf interface{}) bool {
rule := leaf.(*policyAuthorizerRadixLeaf)
if rule.prefix != nil && rule.prefix.access != AccessWrite {
withinPrefixAccess = Deny
return true
}
if rule.exact != nil && rule.exact.access != AccessWrite {
withinPrefixAccess = Deny
return true
}
return false
})
// Deny the write if any sub-rules may be violated. If none are violated then
// we can defer to the baseAccess.
if withinPrefixAccess == Deny {
return Deny
}
// either Default or Allow at this point. Allow if there was a prefix rule
// that was applicable and it granted write access. Default if there was
// no applicable rule.
return baseAccess
}
// KeyringRead is used to determine if the keyring can be
// read by the current ACL token.
func (p *policyAuthorizer) KeyringRead(*AuthorizerContext) EnforcementDecision {
if p.keyringRule != nil {
return enforce(p.keyringRule.access, AccessRead)
}
return Default
}
// KeyringWrite determines if the keyring can be manipulated.
func (p *policyAuthorizer) KeyringWrite(*AuthorizerContext) EnforcementDecision {
if p.keyringRule != nil {
return enforce(p.keyringRule.access, AccessWrite)
}
return Default
}
// MeshRead determines if the read-only mesh functions are allowed.
func (p *policyAuthorizer) MeshRead(ctx *AuthorizerContext) EnforcementDecision {
if p.meshRule != nil {
return enforce(p.meshRule.access, AccessRead)
}
// default to OperatorRead access
return p.OperatorRead(ctx)
}
// MeshWrite determines if the state-changing mesh functions are
// allowed.
func (p *policyAuthorizer) MeshWrite(ctx *AuthorizerContext) EnforcementDecision {
if p.meshRule != nil {
return enforce(p.meshRule.access, AccessWrite)
}
// default to OperatorWrite access
return p.OperatorWrite(ctx)
}
// PeeringRead determines if the read-only peering functions are allowed.
func (p *policyAuthorizer) PeeringRead(ctx *AuthorizerContext) EnforcementDecision {
if p.peeringRule != nil {
return enforce(p.peeringRule.access, AccessRead)
}
// default to OperatorRead access
return p.OperatorRead(ctx)
}
// PeeringWrite determines if the state-changing peering functions are
// allowed.
func (p *policyAuthorizer) PeeringWrite(ctx *AuthorizerContext) EnforcementDecision {
if p.peeringRule != nil {
return enforce(p.peeringRule.access, AccessWrite)
}
// default to OperatorWrite access
return p.OperatorWrite(ctx)
}
// OperatorRead determines if the read-only operator functions are allowed.
func (p *policyAuthorizer) OperatorRead(*AuthorizerContext) EnforcementDecision {
if p.operatorRule != nil {
return enforce(p.operatorRule.access, AccessRead)
}
return Default
}
// OperatorWrite determines if the state-changing operator functions are
// allowed.
func (p *policyAuthorizer) OperatorWrite(*AuthorizerContext) EnforcementDecision {
if p.operatorRule != nil {
return enforce(p.operatorRule.access, AccessWrite)
}
return Default
}
// NodeRead checks if reading (discovery) of a node is allowed
func (p *policyAuthorizer) NodeRead(name string, ctx *AuthorizerContext) EnforcementDecision {
// When reading a node imported from a peer we consider it to be allowed when:
// - The request comes from a locally authenticated service, meaning that it
// has service:write permissions on some name.
// - The requester has permissions to read all nodes in its local cluster,
// therefore it can also read imported nodes.
if ctx.PeerOrEmpty() != "" {
if p.ServiceWriteAny(nil) == Allow {
return Allow
}
return p.NodeReadAll(nil)
}
if rule, ok := getPolicy(name, p.nodeRules); ok {
return enforce(rule.access, AccessRead)
}
return Default
}
func (p *policyAuthorizer) NodeReadAll(_ *AuthorizerContext) EnforcementDecision {
return p.allAllowed(p.nodeRules, AccessRead)
}
// NodeWrite checks if writing (registering) a node is allowed
func (p *policyAuthorizer) NodeWrite(name string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(name, p.nodeRules); ok {
return enforce(rule.access, AccessWrite)
}
return Default
}
// PreparedQueryRead checks if reading (listing) of a prepared query is
// allowed - this isn't execution, just listing its contents.
func (p *policyAuthorizer) PreparedQueryRead(prefix string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(prefix, p.preparedQueryRules); ok {
return enforce(rule.access, AccessRead)
}
return Default
}
// PreparedQueryWrite checks if writing (creating, updating, or deleting) of a
// prepared query is allowed.
func (p *policyAuthorizer) PreparedQueryWrite(prefix string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(prefix, p.preparedQueryRules); ok {
return enforce(rule.access, AccessWrite)
}
return Default
}
// ServiceRead checks if reading (discovery) of a service is allowed
func (p *policyAuthorizer) ServiceRead(name string, ctx *AuthorizerContext) EnforcementDecision {
// When reading a service imported from a peer we consider it to be allowed when:
// - The request comes from a locally authenticated service, meaning that it
// has service:write permissions on some name.
// - The requester has permissions to read all services in its local cluster,
// therefore it can also read imported services.
if ctx.PeerOrEmpty() != "" {
if p.ServiceWriteAny(nil) == Allow {
return Allow
}
return p.ServiceReadAll(nil)
}
if rule, ok := getPolicy(name, p.serviceRules); ok {
return enforce(rule.access, AccessRead)
}
return Default
}
func (p *policyAuthorizer) ServiceReadAll(_ *AuthorizerContext) EnforcementDecision {
return p.allAllowed(p.serviceRules, AccessRead)
}
// ServiceReadPrefix determines whether service read is allowed within the given prefix.
//
// Access is allowed iff all the following are true:
// - There's a read policy for the longest prefix that's shorter or equal to the provided prefix.
// - There's no deny policy for any prefix that's longer than the given prefix.
// - There's no deny policy for any exact match that's within the given prefix.
func (p *policyAuthorizer) ServiceReadPrefix(prefix string, _ *AuthorizerContext) EnforcementDecision {
access := Default
// 1. Walk the prefix tree from root to the given prefix. Find the longest prefix matching ours,
// and use that policy to determine our access as that is the most specific prefix, and it
// should take precedence.
p.serviceRules.WalkPath(prefix, func(path string, leaf interface{}) bool {
rule := leaf.(*policyAuthorizerRadixLeaf)
if rule.prefix != nil {
switch rule.prefix.access {
case AccessRead, AccessWrite:
access = Allow
default:
access = Deny
}
}
// Don't stop iteration because we want to visit all nodes down to our leaf to find the more specific match
// as it should take precedence.
return false
})
// 2. Check rules "below" the given prefix. Access is allowed if there's no deny policy
// for any prefix longer than ours or for any exact match that's within the prefix.
p.serviceRules.WalkPrefix(prefix, func(path string, leaf interface{}) bool {
rule := leaf.(*policyAuthorizerRadixLeaf)
if rule.prefix != nil && (rule.prefix.access != AccessRead && rule.prefix.access != AccessWrite) {
// If any prefix longer than the provided prefix has "deny" policy, then access is denied.
access = Deny
// We don't need to look at the rest of the tree in this case, so terminate early.
return true
}
if rule.exact != nil && (rule.exact.access != AccessRead && rule.exact.access != AccessWrite) {
// If any exact match policy has an explicit deny, then access is denied.
access = Deny
// We don't need to look at the rest of the tree in this case, so terminate early.
return true
}
return false
})
return access
}
// ServiceWrite checks if writing (registering) a service is allowed
func (p *policyAuthorizer) ServiceWrite(name string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(name, p.serviceRules); ok {
return enforce(rule.access, AccessWrite)
}
return Default
}
func (p *policyAuthorizer) ServiceWriteAny(_ *AuthorizerContext) EnforcementDecision {
return p.anyAllowed(p.serviceRules, AccessWrite)
}
// SessionRead checks for permission to read sessions for a given node.
func (p *policyAuthorizer) SessionRead(node string, _ *AuthorizerContext) EnforcementDecision {
if rule, ok := getPolicy(node, p.sessionRules); ok {
return enforce(rule.access, AccessRead)
}
return Default
}
// SessionWrite checks for permission to create sessions for a given node.
func (p *policyAuthorizer) SessionWrite(node string, _ *AuthorizerContext) EnforcementDecision {
// Check for an exact rule or catch-all
if rule, ok := getPolicy(node, p.sessionRules); ok {
return enforce(rule.access, AccessWrite)
}
return Default
}
func (p *policyAuthorizer) ToAllowAuthorizer() AllowAuthorizer {
return AllowAuthorizer{Authorizer: p}
}