consul/vendor/github.com/hashicorp/raft-autopilot/run.go

179 lines
5.0 KiB
Go

package autopilot
import (
"context"
"time"
)
// Start will launch the go routines in the background to perform Autopilot.
// When the context passed in is cancelled or the Stop method is called
// then these routines will exit.
func (a *Autopilot) Start(ctx context.Context) {
a.execLock.Lock()
defer a.execLock.Unlock()
// already running so there is nothing to do
if a.execution != nil && a.execution.status == Running {
return
}
ctx, shutdown := context.WithCancel(ctx)
a.startTime = a.time.Now()
exec := &execInfo{
status: Running,
shutdown: shutdown,
done: make(chan struct{}),
}
if a.execution == nil || a.execution.status == NotRunning {
// In theory with a nil execution or the current execution being in the not
// running state, we should be able to immediately gain the leader lock as
// nothing else should be running and holding the lock. While true we still
// gain the lock to ensure that only one thread may even attempt to be
// modifying the autopilot state at once.
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()
if err := a.leaderLock.TryLock(ctx); err == nil {
a.updateState(ctx)
a.leaderLock.Unlock()
}
}
go a.beginExecution(ctx, exec)
a.execution = exec
return
}
// Stop will terminate the go routines being executed to perform autopilot.
func (a *Autopilot) Stop() <-chan struct{} {
a.execLock.Lock()
defer a.execLock.Unlock()
// Nothing to do
if a.execution == nil || a.execution.status == NotRunning {
done := make(chan struct{})
close(done)
return done
}
a.execution.shutdown()
a.execution.status = ShuttingDown
return a.execution.done
}
// IsRunning returns the current execution status of the autopilot
// go routines as well as a chan which will be closed when the
// routines are no longer running
func (a *Autopilot) IsRunning() (ExecutionStatus, <-chan struct{}) {
a.execLock.Lock()
defer a.execLock.Unlock()
if a.execution == nil || a.execution.status == NotRunning {
done := make(chan struct{})
close(done)
return NotRunning, done
}
return a.execution.status, a.execution.done
}
func (a *Autopilot) finishExecution(exec *execInfo) {
// need to gain the lock because if this was the active execution
// then these values may be read while they are updated.
a.execLock.Lock()
defer a.execLock.Unlock()
exec.shutdown = nil
exec.status = NotRunning
// this should be the final cleanup task as it is what notifies the rest
// of the world that we are now done
close(exec.done)
exec.done = nil
}
func (a *Autopilot) beginExecution(ctx context.Context, exec *execInfo) {
// This will wait for any other go routine to finish executing
// before running any code ourselves to prevent any conflicting
// activity between the two.
if err := a.leaderLock.TryLock(ctx); err != nil {
a.finishExecution(exec)
return
}
a.logger.Debug("autopilot is now running")
// autopilot needs to do 3 things
//
// 1. periodically update the cluster state
// 2. periodically check for and perform promotions and demotions
// 3. Respond to servers leaving and prune dead servers
//
// We could attempt to do all of this in a single go routine except that
// updating the cluster health could potentially take long enough to impact
// the periodicity of the promotions and demotions performed by task 2/3.
// So instead this go routine will spawn a second go routine to manage
// updating the cluster health in the background. This go routine is still
// in control of the overall running status and will not exit until the
// child go routine has exited.
// child go routine for cluster health updating
stateUpdaterDone := make(chan struct{})
go a.runStateUpdater(ctx, stateUpdaterDone)
// cleanup for once we are stopped
defer func() {
// block waiting for our child go routine to also finish
<-stateUpdaterDone
a.logger.Debug("autopilot is now stopped")
a.finishExecution(exec)
a.leaderLock.Unlock()
}()
reconcileTicker := time.NewTicker(a.reconcileInterval)
defer reconcileTicker.Stop()
for {
select {
case <-ctx.Done():
return
case <-reconcileTicker.C:
if err := a.reconcile(); err != nil {
a.logger.Error("Failed to reconcile current state with the desired state")
}
if err := a.pruneDeadServers(); err != nil {
a.logger.Error("Failed to prune dead servers", "error", err)
}
case <-a.removeDeadCh:
if err := a.pruneDeadServers(); err != nil {
a.logger.Error("Failed to prune dead servers", "error", err)
}
}
}
}
// runStateUpdated will periodically update the autopilot state until the context
// passed in is cancelled. When finished the provide done chan will be closed.
func (a *Autopilot) runStateUpdater(ctx context.Context, done chan struct{}) {
a.logger.Debug("state update routine is now running")
defer func() {
a.logger.Debug("state update routine is now stopped")
close(done)
}()
ticker := time.NewTicker(a.updateInterval)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
a.updateState(ctx)
}
}
}