consul/agent/proxycfg/state.go
Freddy 2d633ed804 Fixup discovery chain handling in transparent mode (#10168)
Co-authored-by: R.B. Boyer <4903+rboyer@users.noreply.github.com>

Previously we would associate the address of a discovery chain target
with the discovery chain's filter chain. This was broken for a few reasons:

- If the upstream is a virtual service, the client proxy has no way of
dialing it because virtual services are not targets of their discovery
chains. The targets are distinct services. This is addressed by watching
the endpoints of all upstream services, not just their discovery chain
targets.

- If multiple discovery chains resolve to the same target, that would
lead to multiple filter chains attempting to match on the target's
virtual IP. This is addressed by only matching on the upstream's virtual
IP.

NOTE: this implementation requires an intention to the redirecting
virtual service and not just to the final destination. This is how
we can know that the virtual service is an upstream to watch.

A later PR will look into traversing discovery chains when computing
upstreams so that intentions are only required to the discovery chain
targets.
2021-05-04 14:46:53 +00:00

1895 lines
63 KiB
Go

package proxycfg
import (
"context"
"errors"
"fmt"
"net"
"reflect"
"strings"
"time"
"github.com/hashicorp/go-hclog"
"github.com/mitchellh/copystructure"
"github.com/mitchellh/mapstructure"
"github.com/hashicorp/consul/agent/cache"
cachetype "github.com/hashicorp/consul/agent/cache-types"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/logging"
)
type CacheNotifier interface {
Notify(ctx context.Context, t string, r cache.Request,
correlationID string, ch chan<- cache.UpdateEvent) error
}
type Health interface {
Notify(ctx context.Context, req structs.ServiceSpecificRequest, correlationID string, ch chan<- cache.UpdateEvent) error
}
const (
coalesceTimeout = 200 * time.Millisecond
rootsWatchID = "roots"
leafWatchID = "leaf"
intentionsWatchID = "intentions"
serviceListWatchID = "service-list"
federationStateListGatewaysWatchID = "federation-state-list-mesh-gateways"
consulServerListWatchID = "consul-server-list"
datacentersWatchID = "datacenters"
serviceResolversWatchID = "service-resolvers"
gatewayServicesWatchID = "gateway-services"
gatewayConfigWatchID = "gateway-config"
externalServiceIDPrefix = "external-service:"
serviceLeafIDPrefix = "service-leaf:"
serviceConfigIDPrefix = "service-config:"
serviceResolverIDPrefix = "service-resolver:"
serviceIntentionsIDPrefix = "service-intentions:"
intentionUpstreamsID = "intention-upstreams"
meshConfigEntryID = "mesh"
svcChecksWatchIDPrefix = cachetype.ServiceHTTPChecksName + ":"
serviceIDPrefix = string(structs.UpstreamDestTypeService) + ":"
preparedQueryIDPrefix = string(structs.UpstreamDestTypePreparedQuery) + ":"
defaultPreparedQueryPollInterval = 30 * time.Second
)
// state holds all the state needed to maintain the config for a registered
// connect-proxy service. When a proxy registration is changed, the entire state
// is discarded and a new one created.
type state struct {
// logger, source and cache are required to be set before calling Watch.
logger hclog.Logger
source *structs.QuerySource
cache CacheNotifier
health Health
dnsConfig DNSConfig
serverSNIFn ServerSNIFunc
intentionDefaultAllow bool
// ctx and cancel store the context created during initWatches call
ctx context.Context
cancel func()
kind structs.ServiceKind
service string
proxyID structs.ServiceID
address string
port int
meta map[string]string
taggedAddresses map[string]structs.ServiceAddress
proxyCfg structs.ConnectProxyConfig
token string
ch chan cache.UpdateEvent
snapCh chan ConfigSnapshot
reqCh chan chan *ConfigSnapshot
}
type DNSConfig struct {
Domain string
AltDomain string
}
type ServerSNIFunc func(dc, nodeName string) string
func copyProxyConfig(ns *structs.NodeService) (structs.ConnectProxyConfig, error) {
if ns == nil {
return structs.ConnectProxyConfig{}, nil
}
// Copy the config map
proxyCfgRaw, err := copystructure.Copy(ns.Proxy)
if err != nil {
return structs.ConnectProxyConfig{}, err
}
proxyCfg, ok := proxyCfgRaw.(structs.ConnectProxyConfig)
if !ok {
return structs.ConnectProxyConfig{}, errors.New("failed to copy proxy config")
}
// we can safely modify these since we just copied them
for idx := range proxyCfg.Upstreams {
us := &proxyCfg.Upstreams[idx]
if us.DestinationType != structs.UpstreamDestTypePreparedQuery && us.DestinationNamespace == "" {
// default the upstreams target namespace to the namespace of the proxy
// doing this here prevents needing much more complex logic a bunch of other
// places and makes tracking these upstreams simpler as we can dedup them
// with the maps tracking upstream ids being watched.
proxyCfg.Upstreams[idx].DestinationNamespace = ns.EnterpriseMeta.NamespaceOrDefault()
}
}
return proxyCfg, nil
}
// newState populates the state struct by copying relevant fields from the
// NodeService and Token. We copy so that we can use them in a separate
// goroutine later without reasoning about races with the NodeService passed
// (especially for embedded fields like maps and slices).
//
// The returned state needs its required dependencies to be set before Watch
// can be called.
func newState(ns *structs.NodeService, token string) (*state, error) {
switch ns.Kind {
case structs.ServiceKindConnectProxy:
case structs.ServiceKindTerminatingGateway:
case structs.ServiceKindMeshGateway:
case structs.ServiceKindIngressGateway:
default:
return nil, errors.New("not a connect-proxy, terminating-gateway, mesh-gateway, or ingress-gateway")
}
proxyCfg, err := copyProxyConfig(ns)
if err != nil {
return nil, err
}
taggedAddresses := make(map[string]structs.ServiceAddress)
for k, v := range ns.TaggedAddresses {
taggedAddresses[k] = v
}
meta := make(map[string]string)
for k, v := range ns.Meta {
meta[k] = v
}
return &state{
kind: ns.Kind,
service: ns.Service,
proxyID: ns.CompoundServiceID(),
address: ns.Address,
port: ns.Port,
meta: meta,
taggedAddresses: taggedAddresses,
proxyCfg: proxyCfg,
token: token,
// 10 is fairly arbitrary here but allow for the 3 mandatory and a
// reasonable number of upstream watches to all deliver their initial
// messages in parallel without blocking the cache.Notify loops. It's not a
// huge deal if we do for a short period so we don't need to be more
// conservative to handle larger numbers of upstreams correctly but gives
// some head room for normal operation to be non-blocking in most typical
// cases.
ch: make(chan cache.UpdateEvent, 10),
snapCh: make(chan ConfigSnapshot, 1),
reqCh: make(chan chan *ConfigSnapshot, 1),
}, nil
}
// Watch initialized watches on all necessary cache data for the current proxy
// registration state and returns a chan to observe updates to the
// ConfigSnapshot that contains all necessary config state. The chan is closed
// when the state is Closed.
func (s *state) Watch() (<-chan ConfigSnapshot, error) {
s.ctx, s.cancel = context.WithCancel(context.Background())
snap := s.initialConfigSnapshot()
err := s.initWatches(&snap)
if err != nil {
s.cancel()
return nil, err
}
go s.run(&snap)
return s.snapCh, nil
}
// Close discards the state and stops any long-running watches.
func (s *state) Close() error {
if s.cancel != nil {
s.cancel()
}
return nil
}
// initWatches sets up the watches needed for the particular service
func (s *state) initWatches(snap *ConfigSnapshot) error {
switch s.kind {
case structs.ServiceKindConnectProxy:
return s.initWatchesConnectProxy(snap)
case structs.ServiceKindTerminatingGateway:
return s.initWatchesTerminatingGateway()
case structs.ServiceKindMeshGateway:
return s.initWatchesMeshGateway()
case structs.ServiceKindIngressGateway:
return s.initWatchesIngressGateway()
default:
return fmt.Errorf("Unsupported service kind")
}
}
func (s *state) watchMeshGateway(ctx context.Context, dc string, upstreamID string) error {
return s.cache.Notify(ctx, cachetype.InternalServiceDumpName, &structs.ServiceDumpRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceKind: structs.ServiceKindMeshGateway,
UseServiceKind: true,
Source: *s.source,
EnterpriseMeta: *structs.DefaultEnterpriseMeta(),
}, "mesh-gateway:"+dc+":"+upstreamID, s.ch)
}
// initWatchesConnectProxy sets up the watches needed based on current proxy registration
// state.
func (s *state) initWatchesConnectProxy(snap *ConfigSnapshot) error {
// Watch for root changes
err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, rootsWatchID, s.ch)
if err != nil {
return err
}
// Watch the leaf cert
err = s.cache.Notify(s.ctx, cachetype.ConnectCALeafName, &cachetype.ConnectCALeafRequest{
Datacenter: s.source.Datacenter,
Token: s.token,
Service: s.proxyCfg.DestinationServiceName,
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, leafWatchID, s.ch)
if err != nil {
return err
}
// Watch for intention updates
err = s.cache.Notify(s.ctx, cachetype.IntentionMatchName, &structs.IntentionQueryRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Match: &structs.IntentionQueryMatch{
Type: structs.IntentionMatchDestination,
Entries: []structs.IntentionMatchEntry{
{
Namespace: s.proxyID.NamespaceOrDefault(),
Name: s.proxyCfg.DestinationServiceName,
},
},
},
}, intentionsWatchID, s.ch)
if err != nil {
return err
}
// Watch for service check updates
err = s.cache.Notify(s.ctx, cachetype.ServiceHTTPChecksName, &cachetype.ServiceHTTPChecksRequest{
ServiceID: s.proxyCfg.DestinationServiceID,
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, svcChecksWatchIDPrefix+structs.ServiceIDString(s.proxyCfg.DestinationServiceID, &s.proxyID.EnterpriseMeta), s.ch)
if err != nil {
return err
}
// default the namespace to the namespace of this proxy service
currentNamespace := s.proxyID.NamespaceOrDefault()
if s.proxyCfg.Mode == structs.ProxyModeTransparent {
// When in transparent proxy we will infer upstreams from intentions with this source
err := s.cache.Notify(s.ctx, cachetype.IntentionUpstreamsName, &structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: s.proxyCfg.DestinationServiceName,
EnterpriseMeta: structs.NewEnterpriseMeta(s.proxyID.NamespaceOrEmpty()),
}, intentionUpstreamsID, s.ch)
if err != nil {
return err
}
err = s.cache.Notify(s.ctx, cachetype.ConfigEntryName, &structs.ConfigEntryQuery{
Kind: structs.MeshConfig,
Name: structs.MeshConfigMesh,
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
EnterpriseMeta: *structs.DefaultEnterpriseMeta(),
}, meshConfigEntryID, s.ch)
if err != nil {
return err
}
}
// Watch for updates to service endpoints for all upstreams
for i := range s.proxyCfg.Upstreams {
u := s.proxyCfg.Upstreams[i]
// Store defaults keyed under wildcard so they can be applied to centrally configured upstreams
if u.DestinationName == structs.WildcardSpecifier {
snap.ConnectProxy.UpstreamConfig[u.DestinationID().String()] = &u
continue
}
// This can be true if the upstream is a synthetic entry populated from centralized upstream config.
// Watches should not be created for them.
if u.CentrallyConfigured {
continue
}
snap.ConnectProxy.UpstreamConfig[u.Identifier()] = &u
dc := s.source.Datacenter
if u.Datacenter != "" {
dc = u.Datacenter
}
if s.proxyCfg.Mode == structs.ProxyModeTransparent && (dc == "" || dc == s.source.Datacenter) {
// In transparent proxy mode, watches for upstreams in the local DC are handled by the IntentionUpstreams watch.
continue
}
ns := currentNamespace
if u.DestinationNamespace != "" {
ns = u.DestinationNamespace
}
cfg, err := parseReducedUpstreamConfig(u.Config)
if err != nil {
// Don't hard fail on a config typo, just warn. We'll fall back on
// the plain discovery chain if there is an error so it's safe to
// continue.
s.logger.Warn("failed to parse upstream config",
"upstream", u.Identifier(),
"error", err,
)
}
switch u.DestinationType {
case structs.UpstreamDestTypePreparedQuery:
err = s.cache.Notify(s.ctx, cachetype.PreparedQueryName, &structs.PreparedQueryExecuteRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{Token: s.token, MaxAge: defaultPreparedQueryPollInterval},
QueryIDOrName: u.DestinationName,
Connect: true,
Source: *s.source,
}, "upstream:"+u.Identifier(), s.ch)
if err != nil {
return err
}
case structs.UpstreamDestTypeService:
fallthrough
case "": // Treat unset as the default Service type
err = s.cache.Notify(s.ctx, cachetype.CompiledDiscoveryChainName, &structs.DiscoveryChainRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Name: u.DestinationName,
EvaluateInDatacenter: dc,
EvaluateInNamespace: ns,
OverrideMeshGateway: s.proxyCfg.MeshGateway.OverlayWith(u.MeshGateway),
OverrideProtocol: cfg.Protocol,
OverrideConnectTimeout: cfg.ConnectTimeout(),
}, "discovery-chain:"+u.Identifier(), s.ch)
if err != nil {
return err
}
default:
return fmt.Errorf("unknown upstream type: %q", u.DestinationType)
}
}
return nil
}
// reducedProxyConfig represents the basic opaque config values that are now
// managed with the discovery chain but for backwards compatibility reasons
// should still affect how the proxy is configured.
//
// The full-blown config is agent/xds.UpstreamConfig
type reducedUpstreamConfig struct {
Protocol string `mapstructure:"protocol"`
ConnectTimeoutMs int `mapstructure:"connect_timeout_ms"`
}
func (c *reducedUpstreamConfig) ConnectTimeout() time.Duration {
return time.Duration(c.ConnectTimeoutMs) * time.Millisecond
}
func parseReducedUpstreamConfig(m map[string]interface{}) (reducedUpstreamConfig, error) {
var cfg reducedUpstreamConfig
err := mapstructure.WeakDecode(m, &cfg)
return cfg, err
}
// initWatchesTerminatingGateway sets up the initial watches needed based on the terminating-gateway registration
func (s *state) initWatchesTerminatingGateway() error {
// Watch for root changes
err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, rootsWatchID, s.ch)
if err != nil {
s.logger.Named(logging.TerminatingGateway).
Error("failed to register watch for root changes", "error", err)
return err
}
// Watch for the terminating-gateway's linked services
err = s.cache.Notify(s.ctx, cachetype.GatewayServicesName, &structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: s.service,
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, gatewayServicesWatchID, s.ch)
if err != nil {
s.logger.Named(logging.TerminatingGateway).
Error("failed to register watch for linked services", "error", err)
return err
}
return nil
}
// initWatchesMeshGateway sets up the watches needed based on the current mesh gateway registration
func (s *state) initWatchesMeshGateway() error {
// Watch for root changes
err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, rootsWatchID, s.ch)
if err != nil {
return err
}
// Watch for all services
err = s.cache.Notify(s.ctx, cachetype.CatalogServiceListName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
EnterpriseMeta: *structs.WildcardEnterpriseMeta(),
}, serviceListWatchID, s.ch)
if err != nil {
return err
}
if s.meta[structs.MetaWANFederationKey] == "1" {
// Conveniently we can just use this service meta attribute in one
// place here to set the machinery in motion and leave the conditional
// behavior out of the rest of the package.
err = s.cache.Notify(s.ctx, cachetype.FederationStateListMeshGatewaysName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, federationStateListGatewaysWatchID, s.ch)
if err != nil {
return err
}
err = s.health.Notify(s.ctx, structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: structs.ConsulServiceName,
}, consulServerListWatchID, s.ch)
if err != nil {
return err
}
}
// Eventually we will have to watch connect enable instances for each service as well as the
// destination services themselves but those notifications will be setup later. However we
// cannot setup those watches until we know what the services are. from the service list
// watch above
err = s.cache.Notify(s.ctx, cachetype.CatalogDatacentersName, &structs.DatacentersRequest{
QueryOptions: structs.QueryOptions{Token: s.token, MaxAge: 30 * time.Second},
}, datacentersWatchID, s.ch)
if err != nil {
return err
}
// Once we start getting notified about the datacenters we will setup watches on the
// gateways within those other datacenters. We cannot do that here because we don't
// know what they are yet.
// Watch service-resolvers so we can setup service subset clusters
err = s.cache.Notify(s.ctx, cachetype.ConfigEntriesName, &structs.ConfigEntryQuery{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Kind: structs.ServiceResolver,
EnterpriseMeta: *structs.WildcardEnterpriseMeta(),
}, serviceResolversWatchID, s.ch)
if err != nil {
s.logger.Named(logging.MeshGateway).
Error("failed to register watch for service-resolver config entries", "error", err)
return err
}
return err
}
func (s *state) initWatchesIngressGateway() error {
// Watch for root changes
err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, rootsWatchID, s.ch)
if err != nil {
return err
}
// Watch this ingress gateway's config entry
err = s.cache.Notify(s.ctx, cachetype.ConfigEntryName, &structs.ConfigEntryQuery{
Kind: structs.IngressGateway,
Name: s.service,
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, gatewayConfigWatchID, s.ch)
if err != nil {
return err
}
// Watch the ingress-gateway's list of upstreams
err = s.cache.Notify(s.ctx, cachetype.GatewayServicesName, &structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: s.service,
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, gatewayServicesWatchID, s.ch)
if err != nil {
return err
}
return nil
}
func (s *state) initialConfigSnapshot() ConfigSnapshot {
snap := ConfigSnapshot{
Kind: s.kind,
Service: s.service,
ProxyID: s.proxyID,
Address: s.address,
Port: s.port,
ServiceMeta: s.meta,
TaggedAddresses: s.taggedAddresses,
Proxy: s.proxyCfg,
Datacenter: s.source.Datacenter,
ServerSNIFn: s.serverSNIFn,
IntentionDefaultAllow: s.intentionDefaultAllow,
}
switch s.kind {
case structs.ServiceKindConnectProxy:
snap.ConnectProxy.DiscoveryChain = make(map[string]*structs.CompiledDiscoveryChain)
snap.ConnectProxy.WatchedDiscoveryChains = make(map[string]context.CancelFunc)
snap.ConnectProxy.WatchedUpstreams = make(map[string]map[string]context.CancelFunc)
snap.ConnectProxy.WatchedUpstreamEndpoints = make(map[string]map[string]structs.CheckServiceNodes)
snap.ConnectProxy.WatchedGateways = make(map[string]map[string]context.CancelFunc)
snap.ConnectProxy.WatchedGatewayEndpoints = make(map[string]map[string]structs.CheckServiceNodes)
snap.ConnectProxy.WatchedServiceChecks = make(map[structs.ServiceID][]structs.CheckType)
snap.ConnectProxy.PreparedQueryEndpoints = make(map[string]structs.CheckServiceNodes)
snap.ConnectProxy.UpstreamConfig = make(map[string]*structs.Upstream)
case structs.ServiceKindTerminatingGateway:
snap.TerminatingGateway.WatchedServices = make(map[structs.ServiceName]context.CancelFunc)
snap.TerminatingGateway.WatchedIntentions = make(map[structs.ServiceName]context.CancelFunc)
snap.TerminatingGateway.Intentions = make(map[structs.ServiceName]structs.Intentions)
snap.TerminatingGateway.WatchedLeaves = make(map[structs.ServiceName]context.CancelFunc)
snap.TerminatingGateway.ServiceLeaves = make(map[structs.ServiceName]*structs.IssuedCert)
snap.TerminatingGateway.WatchedConfigs = make(map[structs.ServiceName]context.CancelFunc)
snap.TerminatingGateway.ServiceConfigs = make(map[structs.ServiceName]*structs.ServiceConfigResponse)
snap.TerminatingGateway.WatchedResolvers = make(map[structs.ServiceName]context.CancelFunc)
snap.TerminatingGateway.ServiceResolvers = make(map[structs.ServiceName]*structs.ServiceResolverConfigEntry)
snap.TerminatingGateway.ServiceResolversSet = make(map[structs.ServiceName]bool)
snap.TerminatingGateway.ServiceGroups = make(map[structs.ServiceName]structs.CheckServiceNodes)
snap.TerminatingGateway.GatewayServices = make(map[structs.ServiceName]structs.GatewayService)
snap.TerminatingGateway.HostnameServices = make(map[structs.ServiceName]structs.CheckServiceNodes)
case structs.ServiceKindMeshGateway:
snap.MeshGateway.WatchedServices = make(map[structs.ServiceName]context.CancelFunc)
snap.MeshGateway.WatchedDatacenters = make(map[string]context.CancelFunc)
snap.MeshGateway.ServiceGroups = make(map[structs.ServiceName]structs.CheckServiceNodes)
snap.MeshGateway.GatewayGroups = make(map[string]structs.CheckServiceNodes)
snap.MeshGateway.ServiceResolvers = make(map[structs.ServiceName]*structs.ServiceResolverConfigEntry)
snap.MeshGateway.HostnameDatacenters = make(map[string]structs.CheckServiceNodes)
// there is no need to initialize the map of service resolvers as we
// fully rebuild it every time we get updates
case structs.ServiceKindIngressGateway:
snap.IngressGateway.WatchedDiscoveryChains = make(map[string]context.CancelFunc)
snap.IngressGateway.DiscoveryChain = make(map[string]*structs.CompiledDiscoveryChain)
snap.IngressGateway.WatchedUpstreams = make(map[string]map[string]context.CancelFunc)
snap.IngressGateway.WatchedUpstreamEndpoints = make(map[string]map[string]structs.CheckServiceNodes)
snap.IngressGateway.WatchedGateways = make(map[string]map[string]context.CancelFunc)
snap.IngressGateway.WatchedGatewayEndpoints = make(map[string]map[string]structs.CheckServiceNodes)
}
return snap
}
func (s *state) run(snap *ConfigSnapshot) {
// Close the channel we return from Watch when we stop so consumers can stop
// watching and clean up their goroutines. It's important we do this here and
// not in Close since this routine sends on this chan and so might panic if it
// gets closed from another goroutine.
defer close(s.snapCh)
// This turns out to be really fiddly/painful by just using time.Timer.C
// directly in the code below since you can't detect when a timer is stopped
// vs waiting in order to know to reset it. So just use a chan to send
// ourselves messages.
sendCh := make(chan struct{})
var coalesceTimer *time.Timer
for {
select {
case <-s.ctx.Done():
return
case u := <-s.ch:
s.logger.Trace("A blocking query returned; handling snapshot update")
if err := s.handleUpdate(u, snap); err != nil {
s.logger.Error("Failed to handle update from watch",
"id", u.CorrelationID, "error", err,
)
continue
}
case <-sendCh:
// Make a deep copy of snap so we don't mutate any of the embedded structs
// etc on future updates.
snapCopy, err := snap.Clone()
if err != nil {
s.logger.Error("Failed to copy config snapshot for proxy",
"error", err,
)
continue
}
select {
// Try to send
case s.snapCh <- *snapCopy:
s.logger.Trace("Delivered new snapshot to proxy config watchers")
// Allow the next change to trigger a send
coalesceTimer = nil
// Skip rest of loop - there is nothing to send since nothing changed on
// this iteration
continue
// Avoid blocking if a snapshot is already buffered in snapCh as this can result in a deadlock.
// See PR #9689 for more details.
default:
s.logger.Trace("Failed to deliver new snapshot to proxy config watchers")
// Reset the timer to retry later. This is to ensure we attempt to redeliver the updated snapshot shortly.
if coalesceTimer == nil {
coalesceTimer = time.AfterFunc(coalesceTimeout, func() {
sendCh <- struct{}{}
})
}
// Do not reset coalesceTimer since we just queued a timer-based refresh
continue
}
case replyCh := <-s.reqCh:
s.logger.Trace("A proxy config snapshot was requested")
if !snap.Valid() {
// Not valid yet just respond with nil and move on to next task.
replyCh <- nil
s.logger.Trace("The proxy's config snapshot is not valid yet")
continue
}
// Make a deep copy of snap so we don't mutate any of the embedded structs
// etc on future updates.
snapCopy, err := snap.Clone()
if err != nil {
s.logger.Error("Failed to copy config snapshot for proxy",
"error", err,
)
continue
}
replyCh <- snapCopy
// Skip rest of loop - there is nothing to send since nothing changed on
// this iteration
continue
}
// Check if snap is complete enough to be a valid config to deliver to a
// proxy yet.
if snap.Valid() {
// Don't send it right away, set a short timer that will wait for updates
// from any of the other cache values and deliver them all together.
if coalesceTimer == nil {
coalesceTimer = time.AfterFunc(coalesceTimeout, func() {
// This runs in another goroutine so we can't just do the send
// directly here as access to snap is racy. Instead, signal the main
// loop above.
sendCh <- struct{}{}
})
}
}
}
}
func (s *state) handleUpdate(u cache.UpdateEvent, snap *ConfigSnapshot) error {
switch s.kind {
case structs.ServiceKindConnectProxy:
return s.handleUpdateConnectProxy(u, snap)
case structs.ServiceKindTerminatingGateway:
return s.handleUpdateTerminatingGateway(u, snap)
case structs.ServiceKindMeshGateway:
return s.handleUpdateMeshGateway(u, snap)
case structs.ServiceKindIngressGateway:
return s.handleUpdateIngressGateway(u, snap)
default:
return fmt.Errorf("Unsupported service kind")
}
}
func (s *state) handleUpdateConnectProxy(u cache.UpdateEvent, snap *ConfigSnapshot) error {
if u.Err != nil {
return fmt.Errorf("error filling agent cache: %v", u.Err)
}
switch {
case u.CorrelationID == rootsWatchID:
roots, ok := u.Result.(*structs.IndexedCARoots)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.Roots = roots
case u.CorrelationID == intentionsWatchID:
resp, ok := u.Result.(*structs.IndexedIntentionMatches)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
if len(resp.Matches) > 0 {
// RPC supports matching multiple services at once but we only ever
// query with the one service we represent currently so just pick
// the one result set up.
snap.ConnectProxy.Intentions = resp.Matches[0]
}
snap.ConnectProxy.IntentionsSet = true
case u.CorrelationID == intentionUpstreamsID:
resp, ok := u.Result.(*structs.IndexedServiceList)
if !ok {
return fmt.Errorf("invalid type for response %T", u.Result)
}
seenServices := make(map[string]struct{})
for _, svc := range resp.Services {
seenServices[svc.String()] = struct{}{}
cfgMap := make(map[string]interface{})
u, ok := snap.ConnectProxy.UpstreamConfig[svc.String()]
if ok {
cfgMap = u.Config
} else {
// Use the centralized upstream defaults if they exist and there isn't specific configuration for this upstream
// This is only relevant to upstreams from intentions because for explicit upstreams the defaulting is handled
// by the ResolveServiceConfig endpoint.
wildcardSID := structs.NewServiceID(structs.WildcardSpecifier, structs.WildcardEnterpriseMeta())
defaults, ok := snap.ConnectProxy.UpstreamConfig[wildcardSID.String()]
if ok {
u = defaults
cfgMap = defaults.Config
snap.ConnectProxy.UpstreamConfig[svc.String()] = defaults
}
}
cfg, err := parseReducedUpstreamConfig(cfgMap)
if err != nil {
// Don't hard fail on a config typo, just warn. We'll fall back on
// the plain discovery chain if there is an error so it's safe to
// continue.
s.logger.Warn("failed to parse upstream config",
"upstream", u.Identifier(),
"error", err,
)
}
meshGateway := s.proxyCfg.MeshGateway
if u != nil {
meshGateway = meshGateway.OverlayWith(u.MeshGateway)
}
watchOpts := discoveryChainWatchOpts{
id: svc.String(),
name: svc.Name,
namespace: svc.NamespaceOrDefault(),
cfg: cfg,
meshGateway: meshGateway,
}
err = s.watchDiscoveryChain(snap, watchOpts)
if err != nil {
return fmt.Errorf("failed to watch discovery chain for %s: %v", svc.String(), err)
}
}
// Clean up data from services that were not in the update
for sn := range snap.ConnectProxy.WatchedUpstreams {
if _, ok := seenServices[sn]; !ok {
delete(snap.ConnectProxy.WatchedUpstreams, sn)
}
}
for sn := range snap.ConnectProxy.WatchedUpstreamEndpoints {
if _, ok := seenServices[sn]; !ok {
delete(snap.ConnectProxy.WatchedUpstreamEndpoints, sn)
}
}
for sn := range snap.ConnectProxy.WatchedGateways {
if _, ok := seenServices[sn]; !ok {
delete(snap.ConnectProxy.WatchedGateways, sn)
}
}
for sn := range snap.ConnectProxy.WatchedGatewayEndpoints {
if _, ok := seenServices[sn]; !ok {
delete(snap.ConnectProxy.WatchedGatewayEndpoints, sn)
}
}
for sn, cancelFn := range snap.ConnectProxy.WatchedDiscoveryChains {
if _, ok := seenServices[sn]; !ok {
cancelFn()
delete(snap.ConnectProxy.WatchedDiscoveryChains, sn)
delete(snap.ConnectProxy.DiscoveryChain, sn)
}
}
case strings.HasPrefix(u.CorrelationID, "upstream:"+preparedQueryIDPrefix):
resp, ok := u.Result.(*structs.PreparedQueryExecuteResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
pq := strings.TrimPrefix(u.CorrelationID, "upstream:")
snap.ConnectProxy.PreparedQueryEndpoints[pq] = resp.Nodes
case strings.HasPrefix(u.CorrelationID, svcChecksWatchIDPrefix):
resp, ok := u.Result.([]structs.CheckType)
if !ok {
return fmt.Errorf("invalid type for service checks response: %T, want: []structs.CheckType", u.Result)
}
svcID := structs.ServiceIDFromString(strings.TrimPrefix(u.CorrelationID, svcChecksWatchIDPrefix))
snap.ConnectProxy.WatchedServiceChecks[svcID] = resp
case u.CorrelationID == meshConfigEntryID:
resp, ok := u.Result.(*structs.ConfigEntryResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
if resp.Entry != nil {
meshConf, ok := resp.Entry.(*structs.MeshConfigEntry)
if !ok {
return fmt.Errorf("invalid type for config entry: %T", resp.Entry)
}
snap.ConnectProxy.MeshConfig = meshConf
} else {
snap.ConnectProxy.MeshConfig = nil
}
snap.ConnectProxy.MeshConfigSet = true
default:
return s.handleUpdateUpstreams(u, &snap.ConnectProxy.ConfigSnapshotUpstreams)
}
return nil
}
func (s *state) handleUpdateUpstreams(u cache.UpdateEvent, snap *ConfigSnapshotUpstreams) error {
if u.Err != nil {
return fmt.Errorf("error filling agent cache: %v", u.Err)
}
switch {
case u.CorrelationID == leafWatchID:
leaf, ok := u.Result.(*structs.IssuedCert)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.Leaf = leaf
case strings.HasPrefix(u.CorrelationID, "discovery-chain:"):
resp, ok := u.Result.(*structs.DiscoveryChainResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
svc := strings.TrimPrefix(u.CorrelationID, "discovery-chain:")
snap.DiscoveryChain[svc] = resp.Chain
if err := s.resetWatchesFromChain(svc, resp.Chain, snap); err != nil {
return err
}
case strings.HasPrefix(u.CorrelationID, "upstream-target:"):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
correlationID := strings.TrimPrefix(u.CorrelationID, "upstream-target:")
targetID, svc, ok := removeColonPrefix(correlationID)
if !ok {
return fmt.Errorf("invalid correlation id %q", u.CorrelationID)
}
if _, ok := snap.WatchedUpstreamEndpoints[svc]; !ok {
snap.WatchedUpstreamEndpoints[svc] = make(map[string]structs.CheckServiceNodes)
}
snap.WatchedUpstreamEndpoints[svc][targetID] = resp.Nodes
case strings.HasPrefix(u.CorrelationID, "mesh-gateway:"):
resp, ok := u.Result.(*structs.IndexedNodesWithGateways)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
correlationID := strings.TrimPrefix(u.CorrelationID, "mesh-gateway:")
dc, svc, ok := removeColonPrefix(correlationID)
if !ok {
return fmt.Errorf("invalid correlation id %q", u.CorrelationID)
}
if _, ok = snap.WatchedGatewayEndpoints[svc]; !ok {
snap.WatchedGatewayEndpoints[svc] = make(map[string]structs.CheckServiceNodes)
}
snap.WatchedGatewayEndpoints[svc][dc] = resp.Nodes
default:
return fmt.Errorf("unknown correlation ID: %s", u.CorrelationID)
}
return nil
}
func removeColonPrefix(s string) (string, string, bool) {
idx := strings.Index(s, ":")
if idx == -1 {
return "", "", false
}
return s[0:idx], s[idx+1:], true
}
func (s *state) resetWatchesFromChain(
id string,
chain *structs.CompiledDiscoveryChain,
snap *ConfigSnapshotUpstreams,
) error {
s.logger.Trace("resetting watches for discovery chain", "id", id)
if chain == nil {
return fmt.Errorf("not possible to arrive here with no discovery chain")
}
// Initialize relevant sub maps.
if _, ok := snap.WatchedUpstreams[id]; !ok {
snap.WatchedUpstreams[id] = make(map[string]context.CancelFunc)
}
if _, ok := snap.WatchedUpstreamEndpoints[id]; !ok {
snap.WatchedUpstreamEndpoints[id] = make(map[string]structs.CheckServiceNodes)
}
if _, ok := snap.WatchedGateways[id]; !ok {
snap.WatchedGateways[id] = make(map[string]context.CancelFunc)
}
if _, ok := snap.WatchedGatewayEndpoints[id]; !ok {
snap.WatchedGatewayEndpoints[id] = make(map[string]structs.CheckServiceNodes)
}
// We could invalidate this selectively based on a hash of the relevant
// resolver information, but for now just reset anything about this
// upstream when the chain changes in any way.
//
// TODO(rb): content hash based add/remove
for targetID, cancelFn := range snap.WatchedUpstreams[id] {
s.logger.Trace("stopping watch of target",
"upstream", id,
"chain", chain.ServiceName,
"target", targetID,
)
delete(snap.WatchedUpstreams[id], targetID)
delete(snap.WatchedUpstreamEndpoints[id], targetID)
cancelFn()
}
var (
watchedChainEndpoints bool
needGateways = make(map[string]struct{})
)
chainID := chain.ID()
for _, target := range chain.Targets {
if target.ID == chainID {
watchedChainEndpoints = true
}
opts := targetWatchOpts{
upstreamID: id,
chainID: target.ID,
service: target.Service,
filter: target.Subset.Filter,
datacenter: target.Datacenter,
entMeta: target.GetEnterpriseMetadata(),
}
err := s.watchUpstreamTarget(snap, opts)
if err != nil {
return fmt.Errorf("failed to watch target %q for upstream %q", target.ID, id)
}
// We'll get endpoints from the gateway query, but the health still has
// to come from the backing service query.
switch target.MeshGateway.Mode {
case structs.MeshGatewayModeRemote:
needGateways[target.Datacenter] = struct{}{}
case structs.MeshGatewayModeLocal:
needGateways[s.source.Datacenter] = struct{}{}
}
}
// If the discovery chain's targets do not lead to watching all endpoints
// for the upstream, then create a separate watch for those too.
// This is needed in transparent mode because if there is some service A that
// redirects to service B, the dialing proxy needs to associate A's virtual IP
// with A's discovery chain.
//
// Outside of transparent mode we only watch the chain target, B,
// since A is a virtual service and traffic will not be sent to it.
if !watchedChainEndpoints && s.proxyCfg.Mode == structs.ProxyModeTransparent {
chainEntMeta := structs.NewEnterpriseMeta(chain.Namespace)
opts := targetWatchOpts{
upstreamID: id,
chainID: chainID,
service: chain.ServiceName,
filter: "",
datacenter: chain.Datacenter,
entMeta: &chainEntMeta,
}
err := s.watchUpstreamTarget(snap, opts)
if err != nil {
return fmt.Errorf("failed to watch target %q for upstream %q", chainID, id)
}
}
for dc := range needGateways {
if _, ok := snap.WatchedGateways[id][dc]; ok {
continue
}
s.logger.Trace("initializing watch of mesh gateway in datacenter",
"upstream", id,
"chain", chain.ServiceName,
"datacenter", dc,
)
ctx, cancel := context.WithCancel(s.ctx)
err := s.watchMeshGateway(ctx, dc, id)
if err != nil {
cancel()
return err
}
snap.WatchedGateways[id][dc] = cancel
}
for dc, cancelFn := range snap.WatchedGateways[id] {
if _, ok := needGateways[dc]; ok {
continue
}
s.logger.Trace("stopping watch of mesh gateway in datacenter",
"upstream", id,
"chain", chain.ServiceName,
"datacenter", dc,
)
delete(snap.WatchedGateways[id], dc)
delete(snap.WatchedGatewayEndpoints[id], dc)
cancelFn()
}
return nil
}
type targetWatchOpts struct {
upstreamID string
chainID string
service string
filter string
datacenter string
entMeta *structs.EnterpriseMeta
}
func (s *state) watchUpstreamTarget(snap *ConfigSnapshotUpstreams, opts targetWatchOpts) error {
s.logger.Trace("initializing watch of target",
"upstream", opts.upstreamID,
"chain", opts.service,
"target", opts.chainID,
)
var finalMeta structs.EnterpriseMeta
finalMeta.Merge(opts.entMeta)
correlationID := "upstream-target:" + opts.chainID + ":" + opts.upstreamID
ctx, cancel := context.WithCancel(s.ctx)
err := s.health.Notify(ctx, structs.ServiceSpecificRequest{
Datacenter: opts.datacenter,
QueryOptions: structs.QueryOptions{
Token: s.token,
Filter: opts.filter,
},
ServiceName: opts.service,
Connect: true,
// Note that Identifier doesn't type-prefix for service any more as it's
// the default and makes metrics and other things much cleaner. It's
// simpler for us if we have the type to make things unambiguous.
Source: *s.source,
EnterpriseMeta: finalMeta,
}, correlationID, s.ch)
if err != nil {
cancel()
return err
}
snap.WatchedUpstreams[opts.upstreamID][opts.chainID] = cancel
return nil
}
func (s *state) handleUpdateTerminatingGateway(u cache.UpdateEvent, snap *ConfigSnapshot) error {
if u.Err != nil {
return fmt.Errorf("error filling agent cache: %v", u.Err)
}
logger := s.logger.Named(logging.TerminatingGateway)
switch {
case u.CorrelationID == rootsWatchID:
roots, ok := u.Result.(*structs.IndexedCARoots)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.Roots = roots
// Update watches based on the current list of services associated with the terminating-gateway
case u.CorrelationID == gatewayServicesWatchID:
services, ok := u.Result.(*structs.IndexedGatewayServices)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
svcMap := make(map[structs.ServiceName]struct{})
for _, svc := range services.Services {
// Make sure to add every service to this map, we use it to cancel watches below.
svcMap[svc.Service] = struct{}{}
// Store the gateway <-> service mapping for TLS origination
snap.TerminatingGateway.GatewayServices[svc.Service] = *svc
// Watch the health endpoint to discover endpoints for the service
if _, ok := snap.TerminatingGateway.WatchedServices[svc.Service]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.health.Notify(ctx, structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: svc.Service.Name,
EnterpriseMeta: svc.Service.EnterpriseMeta,
// The gateway acts as the service's proxy, so we do NOT want to discover other proxies
Connect: false,
}, externalServiceIDPrefix+svc.Service.String(), s.ch)
if err != nil {
logger.Error("failed to register watch for external-service",
"service", svc.Service.String(),
"error", err,
)
cancel()
return err
}
snap.TerminatingGateway.WatchedServices[svc.Service] = cancel
}
// Watch intentions with this service as their destination
// The gateway will enforce intentions for connections to the service
if _, ok := snap.TerminatingGateway.WatchedIntentions[svc.Service]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.IntentionMatchName, &structs.IntentionQueryRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Match: &structs.IntentionQueryMatch{
Type: structs.IntentionMatchDestination,
Entries: []structs.IntentionMatchEntry{
{
Namespace: svc.Service.NamespaceOrDefault(),
Name: svc.Service.Name,
},
},
},
}, serviceIntentionsIDPrefix+svc.Service.String(), s.ch)
if err != nil {
logger.Error("failed to register watch for service-intentions",
"service", svc.Service.String(),
"error", err,
)
cancel()
return err
}
snap.TerminatingGateway.WatchedIntentions[svc.Service] = cancel
}
// Watch leaf certificate for the service
// This cert is used to terminate mTLS connections on the service's behalf
if _, ok := snap.TerminatingGateway.WatchedLeaves[svc.Service]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.ConnectCALeafName, &cachetype.ConnectCALeafRequest{
Datacenter: s.source.Datacenter,
Token: s.token,
Service: svc.Service.Name,
EnterpriseMeta: svc.Service.EnterpriseMeta,
}, serviceLeafIDPrefix+svc.Service.String(), s.ch)
if err != nil {
logger.Error("failed to register watch for a service-leaf",
"service", svc.Service.String(),
"error", err,
)
cancel()
return err
}
snap.TerminatingGateway.WatchedLeaves[svc.Service] = cancel
}
// Watch service configs for the service.
// These are used to determine the protocol for the target service.
if _, ok := snap.TerminatingGateway.WatchedConfigs[svc.Service]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.ResolvedServiceConfigName, &structs.ServiceConfigRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Name: svc.Service.Name,
EnterpriseMeta: svc.Service.EnterpriseMeta,
}, serviceConfigIDPrefix+svc.Service.String(), s.ch)
if err != nil {
logger.Error("failed to register watch for a resolved service config",
"service", svc.Service.String(),
"error", err,
)
cancel()
return err
}
snap.TerminatingGateway.WatchedConfigs[svc.Service] = cancel
}
// Watch service resolvers for the service
// These are used to create clusters and endpoints for the service subsets
if _, ok := snap.TerminatingGateway.WatchedResolvers[svc.Service]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.ConfigEntriesName, &structs.ConfigEntryQuery{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Kind: structs.ServiceResolver,
Name: svc.Service.Name,
EnterpriseMeta: svc.Service.EnterpriseMeta,
}, serviceResolverIDPrefix+svc.Service.String(), s.ch)
if err != nil {
logger.Error("failed to register watch for a service-resolver",
"service", svc.Service.String(),
"error", err,
)
cancel()
return err
}
snap.TerminatingGateway.WatchedResolvers[svc.Service] = cancel
}
}
// Delete gateway service mapping for services that were not in the update
for sn := range snap.TerminatingGateway.GatewayServices {
if _, ok := svcMap[sn]; !ok {
delete(snap.TerminatingGateway.GatewayServices, sn)
}
}
// Clean up services with hostname mapping for services that were not in the update
for sn := range snap.TerminatingGateway.HostnameServices {
if _, ok := svcMap[sn]; !ok {
delete(snap.TerminatingGateway.HostnameServices, sn)
}
}
// Cancel service instance watches for services that were not in the update
for sn, cancelFn := range snap.TerminatingGateway.WatchedServices {
if _, ok := svcMap[sn]; !ok {
logger.Debug("canceling watch for service", "service", sn.String())
delete(snap.TerminatingGateway.WatchedServices, sn)
delete(snap.TerminatingGateway.ServiceGroups, sn)
cancelFn()
}
}
// Cancel leaf cert watches for services that were not in the update
for sn, cancelFn := range snap.TerminatingGateway.WatchedLeaves {
if _, ok := svcMap[sn]; !ok {
logger.Debug("canceling watch for leaf cert", "service", sn.String())
delete(snap.TerminatingGateway.WatchedLeaves, sn)
delete(snap.TerminatingGateway.ServiceLeaves, sn)
cancelFn()
}
}
// Cancel service config watches for services that were not in the update
for sn, cancelFn := range snap.TerminatingGateway.WatchedConfigs {
if _, ok := svcMap[sn]; !ok {
logger.Debug("canceling watch for resolved service config", "service", sn.String())
delete(snap.TerminatingGateway.WatchedConfigs, sn)
delete(snap.TerminatingGateway.ServiceConfigs, sn)
cancelFn()
}
}
// Cancel service-resolver watches for services that were not in the update
for sn, cancelFn := range snap.TerminatingGateway.WatchedResolvers {
if _, ok := svcMap[sn]; !ok {
logger.Debug("canceling watch for service-resolver", "service", sn.String())
delete(snap.TerminatingGateway.WatchedResolvers, sn)
delete(snap.TerminatingGateway.ServiceResolvers, sn)
delete(snap.TerminatingGateway.ServiceResolversSet, sn)
cancelFn()
}
}
// Cancel intention watches for services that were not in the update
for sn, cancelFn := range snap.TerminatingGateway.WatchedIntentions {
if _, ok := svcMap[sn]; !ok {
logger.Debug("canceling watch for intention", "service", sn.String())
delete(snap.TerminatingGateway.WatchedIntentions, sn)
delete(snap.TerminatingGateway.Intentions, sn)
cancelFn()
}
}
case strings.HasPrefix(u.CorrelationID, externalServiceIDPrefix):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, externalServiceIDPrefix))
delete(snap.TerminatingGateway.ServiceGroups, sn)
delete(snap.TerminatingGateway.HostnameServices, sn)
if len(resp.Nodes) > 0 {
snap.TerminatingGateway.ServiceGroups[sn] = resp.Nodes
snap.TerminatingGateway.HostnameServices[sn] = s.hostnameEndpoints(logging.TerminatingGateway, snap.Datacenter, resp.Nodes)
}
// Store leaf cert for watched service
case strings.HasPrefix(u.CorrelationID, serviceLeafIDPrefix):
leaf, ok := u.Result.(*structs.IssuedCert)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceLeafIDPrefix))
snap.TerminatingGateway.ServiceLeaves[sn] = leaf
case strings.HasPrefix(u.CorrelationID, serviceConfigIDPrefix):
serviceConfig, ok := u.Result.(*structs.ServiceConfigResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceConfigIDPrefix))
snap.TerminatingGateway.ServiceConfigs[sn] = serviceConfig
case strings.HasPrefix(u.CorrelationID, serviceResolverIDPrefix):
configEntries, ok := u.Result.(*structs.IndexedConfigEntries)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceResolverIDPrefix))
// There should only ever be one entry for a service resolver within a namespace
if len(configEntries.Entries) == 1 {
if resolver, ok := configEntries.Entries[0].(*structs.ServiceResolverConfigEntry); ok {
snap.TerminatingGateway.ServiceResolvers[sn] = resolver
}
}
snap.TerminatingGateway.ServiceResolversSet[sn] = true
case strings.HasPrefix(u.CorrelationID, serviceIntentionsIDPrefix):
resp, ok := u.Result.(*structs.IndexedIntentionMatches)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceIntentionsIDPrefix))
if len(resp.Matches) > 0 {
// RPC supports matching multiple services at once but we only ever
// query with the one service we represent currently so just pick
// the one result set up.
snap.TerminatingGateway.Intentions[sn] = resp.Matches[0]
}
default:
// do nothing
}
return nil
}
func (s *state) handleUpdateMeshGateway(u cache.UpdateEvent, snap *ConfigSnapshot) error {
if u.Err != nil {
return fmt.Errorf("error filling agent cache: %v", u.Err)
}
meshLogger := s.logger.Named(logging.MeshGateway)
switch u.CorrelationID {
case rootsWatchID:
roots, ok := u.Result.(*structs.IndexedCARoots)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.Roots = roots
case federationStateListGatewaysWatchID:
dcIndexedNodes, ok := u.Result.(*structs.DatacenterIndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.MeshGateway.FedStateGateways = dcIndexedNodes.DatacenterNodes
for dc, nodes := range dcIndexedNodes.DatacenterNodes {
snap.MeshGateway.HostnameDatacenters[dc] = s.hostnameEndpoints(logging.MeshGateway, snap.Datacenter, nodes)
}
for dc := range snap.MeshGateway.HostnameDatacenters {
if _, ok := dcIndexedNodes.DatacenterNodes[dc]; !ok {
delete(snap.MeshGateway.HostnameDatacenters, dc)
}
}
case serviceListWatchID:
services, ok := u.Result.(*structs.IndexedServiceList)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
svcMap := make(map[structs.ServiceName]struct{})
for _, svc := range services.Services {
// Make sure to add every service to this map, we use it to cancel
// watches below.
svcMap[svc] = struct{}{}
if _, ok := snap.MeshGateway.WatchedServices[svc]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.health.Notify(ctx, structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: svc.Name,
Connect: true,
EnterpriseMeta: svc.EnterpriseMeta,
}, fmt.Sprintf("connect-service:%s", svc.String()), s.ch)
if err != nil {
meshLogger.Error("failed to register watch for connect-service",
"service", svc.String(),
"error", err,
)
cancel()
return err
}
snap.MeshGateway.WatchedServices[svc] = cancel
}
}
for sid, cancelFn := range snap.MeshGateway.WatchedServices {
if _, ok := svcMap[sid]; !ok {
meshLogger.Debug("canceling watch for service", "service", sid.String())
// TODO (gateways) Should the sid also be deleted from snap.MeshGateway.ServiceGroups?
// Do those endpoints get cleaned up some other way?
delete(snap.MeshGateway.WatchedServices, sid)
cancelFn()
}
}
snap.MeshGateway.WatchedServicesSet = true
case datacentersWatchID:
datacentersRaw, ok := u.Result.(*[]string)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
if datacentersRaw == nil {
return fmt.Errorf("invalid response with a nil datacenter list")
}
datacenters := *datacentersRaw
for _, dc := range datacenters {
if dc == s.source.Datacenter {
continue
}
if _, ok := snap.MeshGateway.WatchedDatacenters[dc]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.InternalServiceDumpName, &structs.ServiceDumpRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceKind: structs.ServiceKindMeshGateway,
UseServiceKind: true,
Source: *s.source,
EnterpriseMeta: *structs.DefaultEnterpriseMeta(),
}, fmt.Sprintf("mesh-gateway:%s", dc), s.ch)
if err != nil {
meshLogger.Error("failed to register watch for mesh-gateway",
"datacenter", dc,
"error", err,
)
cancel()
return err
}
snap.MeshGateway.WatchedDatacenters[dc] = cancel
}
}
for dc, cancelFn := range snap.MeshGateway.WatchedDatacenters {
found := false
for _, dcCurrent := range datacenters {
if dcCurrent == dc {
found = true
break
}
}
if !found {
delete(snap.MeshGateway.WatchedDatacenters, dc)
cancelFn()
}
}
case serviceResolversWatchID:
configEntries, ok := u.Result.(*structs.IndexedConfigEntries)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
resolvers := make(map[structs.ServiceName]*structs.ServiceResolverConfigEntry)
for _, entry := range configEntries.Entries {
if resolver, ok := entry.(*structs.ServiceResolverConfigEntry); ok {
resolvers[structs.NewServiceName(resolver.Name, &resolver.EnterpriseMeta)] = resolver
}
}
snap.MeshGateway.ServiceResolvers = resolvers
case consulServerListWatchID:
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
// Do some initial sanity checks to avoid doing something dumb.
for _, csn := range resp.Nodes {
if csn.Service.Service != structs.ConsulServiceName {
return fmt.Errorf("expected service name %q but got %q",
structs.ConsulServiceName, csn.Service.Service)
}
if csn.Node.Datacenter != snap.Datacenter {
return fmt.Errorf("expected datacenter %q but got %q",
snap.Datacenter, csn.Node.Datacenter)
}
}
snap.MeshGateway.ConsulServers = resp.Nodes
default:
switch {
case strings.HasPrefix(u.CorrelationID, "connect-service:"):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, "connect-service:"))
if len(resp.Nodes) > 0 {
snap.MeshGateway.ServiceGroups[sn] = resp.Nodes
} else if _, ok := snap.MeshGateway.ServiceGroups[sn]; ok {
delete(snap.MeshGateway.ServiceGroups, sn)
}
case strings.HasPrefix(u.CorrelationID, "mesh-gateway:"):
resp, ok := u.Result.(*structs.IndexedNodesWithGateways)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
dc := strings.TrimPrefix(u.CorrelationID, "mesh-gateway:")
delete(snap.MeshGateway.GatewayGroups, dc)
delete(snap.MeshGateway.HostnameDatacenters, dc)
if len(resp.Nodes) > 0 {
snap.MeshGateway.GatewayGroups[dc] = resp.Nodes
snap.MeshGateway.HostnameDatacenters[dc] = s.hostnameEndpoints(logging.MeshGateway, snap.Datacenter, resp.Nodes)
}
default:
// do nothing for now
}
}
return nil
}
func (s *state) handleUpdateIngressGateway(u cache.UpdateEvent, snap *ConfigSnapshot) error {
if u.Err != nil {
return fmt.Errorf("error filling agent cache: %v", u.Err)
}
switch {
case u.CorrelationID == rootsWatchID:
roots, ok := u.Result.(*structs.IndexedCARoots)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
snap.Roots = roots
case u.CorrelationID == gatewayConfigWatchID:
resp, ok := u.Result.(*structs.ConfigEntryResponse)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
gatewayConf, ok := resp.Entry.(*structs.IngressGatewayConfigEntry)
if !ok {
return fmt.Errorf("invalid type for config entry: %T", resp.Entry)
}
snap.IngressGateway.TLSEnabled = gatewayConf.TLS.Enabled
snap.IngressGateway.TLSSet = true
if err := s.watchIngressLeafCert(snap); err != nil {
return err
}
case u.CorrelationID == gatewayServicesWatchID:
services, ok := u.Result.(*structs.IndexedGatewayServices)
if !ok {
return fmt.Errorf("invalid type for response: %T", u.Result)
}
// Update our upstreams and watches.
var hosts []string
watchedSvcs := make(map[string]struct{})
upstreamsMap := make(map[IngressListenerKey]structs.Upstreams)
for _, service := range services.Services {
u := makeUpstream(service)
watchOpts := discoveryChainWatchOpts{
id: u.Identifier(),
name: u.DestinationName,
namespace: u.DestinationNamespace,
}
err := s.watchDiscoveryChain(snap, watchOpts)
if err != nil {
return fmt.Errorf("failed to watch discovery chain for %s: %v", u.Identifier(), err)
}
watchedSvcs[u.Identifier()] = struct{}{}
hosts = append(hosts, service.Hosts...)
id := IngressListenerKey{Protocol: service.Protocol, Port: service.Port}
upstreamsMap[id] = append(upstreamsMap[id], u)
}
snap.IngressGateway.Upstreams = upstreamsMap
snap.IngressGateway.Hosts = hosts
snap.IngressGateway.HostsSet = true
for id, cancelFn := range snap.IngressGateway.WatchedDiscoveryChains {
if _, ok := watchedSvcs[id]; !ok {
cancelFn()
delete(snap.IngressGateway.WatchedDiscoveryChains, id)
}
}
if err := s.watchIngressLeafCert(snap); err != nil {
return err
}
default:
return s.handleUpdateUpstreams(u, &snap.IngressGateway.ConfigSnapshotUpstreams)
}
return nil
}
func makeUpstream(g *structs.GatewayService) structs.Upstream {
upstream := structs.Upstream{
DestinationName: g.Service.Name,
DestinationNamespace: g.Service.NamespaceOrDefault(),
LocalBindPort: g.Port,
IngressHosts: g.Hosts,
// Pass the protocol that was configured on the ingress listener in order
// to force that protocol on the Envoy listener.
Config: map[string]interface{}{
"protocol": g.Protocol,
},
}
return upstream
}
type discoveryChainWatchOpts struct {
id string
name string
namespace string
cfg reducedUpstreamConfig
meshGateway structs.MeshGatewayConfig
}
func (s *state) watchDiscoveryChain(snap *ConfigSnapshot, opts discoveryChainWatchOpts) error {
if _, ok := snap.ConnectProxy.WatchedDiscoveryChains[opts.id]; ok {
return nil
}
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.CompiledDiscoveryChainName, &structs.DiscoveryChainRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Name: opts.name,
EvaluateInDatacenter: s.source.Datacenter,
EvaluateInNamespace: opts.namespace,
OverrideProtocol: opts.cfg.Protocol,
OverrideConnectTimeout: opts.cfg.ConnectTimeout(),
OverrideMeshGateway: opts.meshGateway,
}, "discovery-chain:"+opts.id, s.ch)
if err != nil {
cancel()
return err
}
switch s.kind {
case structs.ServiceKindIngressGateway:
snap.IngressGateway.WatchedDiscoveryChains[opts.id] = cancel
case structs.ServiceKindConnectProxy:
snap.ConnectProxy.WatchedDiscoveryChains[opts.id] = cancel
default:
cancel()
return fmt.Errorf("unsupported kind %s", s.kind)
}
return nil
}
func (s *state) generateIngressDNSSANs(snap *ConfigSnapshot) []string {
// Update our leaf cert watch with wildcard entries for our DNS domains as well as any
// configured custom hostnames from the service.
if !snap.IngressGateway.TLSEnabled {
return nil
}
var dnsNames []string
namespaces := make(map[string]struct{})
for _, upstreams := range snap.IngressGateway.Upstreams {
for _, u := range upstreams {
namespaces[u.DestinationNamespace] = struct{}{}
}
}
for ns := range namespaces {
// The default namespace is special cased in DNS resolution, so special
// case it here.
if ns == structs.IntentionDefaultNamespace {
ns = ""
} else {
ns = ns + "."
}
dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s", ns, s.dnsConfig.Domain))
dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s.%s", ns, s.source.Datacenter, s.dnsConfig.Domain))
if s.dnsConfig.AltDomain != "" {
dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s", ns, s.dnsConfig.AltDomain))
dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s.%s", ns, s.source.Datacenter, s.dnsConfig.AltDomain))
}
}
dnsNames = append(dnsNames, snap.IngressGateway.Hosts...)
return dnsNames
}
func (s *state) watchIngressLeafCert(snap *ConfigSnapshot) error {
if !snap.IngressGateway.TLSSet || !snap.IngressGateway.HostsSet {
return nil
}
// Watch the leaf cert
if snap.IngressGateway.LeafCertWatchCancel != nil {
snap.IngressGateway.LeafCertWatchCancel()
}
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.ConnectCALeafName, &cachetype.ConnectCALeafRequest{
Datacenter: s.source.Datacenter,
Token: s.token,
Service: s.service,
DNSSAN: s.generateIngressDNSSANs(snap),
EnterpriseMeta: s.proxyID.EnterpriseMeta,
}, leafWatchID, s.ch)
if err != nil {
cancel()
return err
}
snap.IngressGateway.LeafCertWatchCancel = cancel
return nil
}
// CurrentSnapshot synchronously returns the current ConfigSnapshot if there is
// one ready. If we don't have one yet because not all necessary parts have been
// returned (i.e. both roots and leaf cert), nil is returned.
func (s *state) CurrentSnapshot() *ConfigSnapshot {
// Make a chan for the response to be sent on
ch := make(chan *ConfigSnapshot, 1)
s.reqCh <- ch
// Wait for the response
return <-ch
}
// Changed returns whether or not the passed NodeService has had any of the
// fields we care about for config state watching changed or a different token.
func (s *state) Changed(ns *structs.NodeService, token string) bool {
if ns == nil {
return true
}
proxyCfg, err := copyProxyConfig(ns)
if err != nil {
s.logger.Warn("Failed to parse proxy config and will treat the new service as unchanged")
}
return ns.Kind != s.kind ||
s.proxyID != ns.CompoundServiceID() ||
s.address != ns.Address ||
s.port != ns.Port ||
!reflect.DeepEqual(s.proxyCfg, proxyCfg) ||
s.token != token
}
// hostnameEndpoints returns all CheckServiceNodes that have hostnames instead of IPs as the address.
// Envoy cannot resolve hostnames provided through EDS, so we exclusively use CDS for these clusters.
// If there is a mix of hostnames and addresses we exclusively use the hostnames, since clusters cannot discover
// services with both EDS and DNS.
func (s *state) hostnameEndpoints(loggerName string, localDC string, nodes structs.CheckServiceNodes) structs.CheckServiceNodes {
var (
hasIP bool
hasHostname bool
resp structs.CheckServiceNodes
)
for _, n := range nodes {
addr, _ := n.BestAddress(localDC != n.Node.Datacenter)
if net.ParseIP(addr) != nil {
hasIP = true
continue
}
hasHostname = true
resp = append(resp, n)
}
if hasHostname && hasIP {
dc := nodes[0].Node.Datacenter
sn := nodes[0].Service.CompoundServiceName()
s.logger.Named(loggerName).
Warn("service contains instances with mix of hostnames and IP addresses; only hostnames will be passed to Envoy",
"dc", dc, "service", sn.String())
}
return resp
}