mirror of
https://github.com/status-im/consul.git
synced 2025-01-22 11:40:06 +00:00
42ec34d101
make TestNewCARoot much more strict compare the full result instead of only a few fields. add a test case with 2 and 3 certificates in the pem
226 lines
6.2 KiB
Go
226 lines
6.2 KiB
Go
package connect
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/ecdsa"
|
|
"crypto/rsa"
|
|
"crypto/sha1"
|
|
"crypto/sha256"
|
|
"crypto/x509"
|
|
"encoding/hex"
|
|
"encoding/pem"
|
|
"fmt"
|
|
"math/big"
|
|
"strings"
|
|
)
|
|
|
|
// ParseCert parses the x509 certificate from a PEM-encoded value.
|
|
func ParseCert(pemValue string) (*x509.Certificate, error) {
|
|
// The _ result below is not an error but the remaining PEM bytes.
|
|
block, _ := pem.Decode([]byte(pemValue))
|
|
if block == nil {
|
|
return nil, fmt.Errorf("no PEM-encoded data found")
|
|
}
|
|
|
|
if block.Type != "CERTIFICATE" {
|
|
return nil, fmt.Errorf("first PEM-block should be CERTIFICATE type")
|
|
}
|
|
|
|
return x509.ParseCertificate(block.Bytes)
|
|
}
|
|
|
|
// ParseLeafCerts parses all of the x509 certificates from a PEM-encoded value
|
|
// under the assumption that the first cert is a leaf (non-CA) cert and the
|
|
// rest are intermediate CA certs.
|
|
//
|
|
// If no certificates are found this returns an error.
|
|
func ParseLeafCerts(pemValue string) (*x509.Certificate, *x509.CertPool, error) {
|
|
certs, err := parseCerts(pemValue)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
leaf := certs[0]
|
|
if leaf.IsCA {
|
|
return nil, nil, fmt.Errorf("first PEM-block should be a leaf cert")
|
|
}
|
|
|
|
intermediates := x509.NewCertPool()
|
|
for _, cert := range certs[1:] {
|
|
if !cert.IsCA {
|
|
return nil, nil, fmt.Errorf("found an unexpected leaf cert after the first PEM-block")
|
|
}
|
|
intermediates.AddCert(cert)
|
|
}
|
|
|
|
return leaf, intermediates, nil
|
|
}
|
|
|
|
// CertSubjects can be used in debugging to return the subject of each
|
|
// certificate in the PEM bundle. Each subject is separated by a newline.
|
|
func CertSubjects(pem string) string {
|
|
certs, err := parseCerts(pem)
|
|
if err != nil {
|
|
return err.Error()
|
|
}
|
|
var buf strings.Builder
|
|
for _, cert := range certs {
|
|
buf.WriteString(cert.Subject.String())
|
|
buf.WriteString("\n")
|
|
}
|
|
return buf.String()
|
|
}
|
|
|
|
// ParseCerts parses the all x509 certificates from a PEM-encoded value.
|
|
// The first returned cert is a leaf cert and any other ones are intermediates.
|
|
//
|
|
// If no certificates are found this returns an error.
|
|
func parseCerts(pemValue string) ([]*x509.Certificate, error) {
|
|
var out []*x509.Certificate
|
|
|
|
rest := []byte(pemValue)
|
|
for {
|
|
// The _ result below is not an error but the remaining PEM bytes.
|
|
block, remaining := pem.Decode(rest)
|
|
if block == nil {
|
|
break
|
|
}
|
|
rest = remaining
|
|
|
|
if block.Type != "CERTIFICATE" {
|
|
return nil, fmt.Errorf("PEM-block should be CERTIFICATE type")
|
|
}
|
|
|
|
cert, err := x509.ParseCertificate(block.Bytes)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
out = append(out, cert)
|
|
}
|
|
|
|
if len(out) == 0 {
|
|
return nil, fmt.Errorf("no PEM-encoded data found")
|
|
}
|
|
|
|
return out, nil
|
|
}
|
|
|
|
// CalculateCertFingerprint calculates the SHA-1 fingerprint from the cert bytes.
|
|
func CalculateCertFingerprint(cert []byte) string {
|
|
hash := sha1.Sum(cert)
|
|
return HexString(hash[:])
|
|
}
|
|
|
|
// ParseSigner parses a crypto.Signer from a PEM-encoded key. The private key
|
|
// is expected to be the first block in the PEM value.
|
|
func ParseSigner(pemValue string) (crypto.Signer, error) {
|
|
// The _ result below is not an error but the remaining PEM bytes.
|
|
block, _ := pem.Decode([]byte(pemValue))
|
|
if block == nil {
|
|
return nil, fmt.Errorf("no PEM-encoded data found")
|
|
}
|
|
|
|
switch block.Type {
|
|
case "EC PRIVATE KEY":
|
|
return x509.ParseECPrivateKey(block.Bytes)
|
|
|
|
case "RSA PRIVATE KEY":
|
|
return x509.ParsePKCS1PrivateKey(block.Bytes)
|
|
|
|
case "PRIVATE KEY":
|
|
signer, err := x509.ParsePKCS8PrivateKey(block.Bytes)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
pk, ok := signer.(crypto.Signer)
|
|
if !ok {
|
|
return nil, fmt.Errorf("private key is not a valid format")
|
|
}
|
|
|
|
return pk, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unknown PEM block type for signing key: %s", block.Type)
|
|
}
|
|
}
|
|
|
|
// ParseCSR parses a CSR from a PEM-encoded value. The certificate request
|
|
// must be the the first block in the PEM value.
|
|
func ParseCSR(pemValue string) (*x509.CertificateRequest, error) {
|
|
// The _ result below is not an error but the remaining PEM bytes.
|
|
block, _ := pem.Decode([]byte(pemValue))
|
|
if block == nil {
|
|
return nil, fmt.Errorf("no PEM-encoded data found")
|
|
}
|
|
|
|
if block.Type != "CERTIFICATE REQUEST" {
|
|
return nil, fmt.Errorf("first PEM-block should be CERTIFICATE REQUEST type")
|
|
}
|
|
|
|
return x509.ParseCertificateRequest(block.Bytes)
|
|
}
|
|
|
|
// KeyId returns a x509 KeyId from the given signing key. The key must be
|
|
// an *ecdsa.PublicKey currently, but may support more types in the future.
|
|
func KeyId(raw interface{}) ([]byte, error) {
|
|
switch raw.(type) {
|
|
case *ecdsa.PublicKey:
|
|
case *rsa.PublicKey:
|
|
default:
|
|
return nil, fmt.Errorf("invalid key type: %T", raw)
|
|
}
|
|
|
|
// This is not standard; RFC allows any unique identifier as long as they
|
|
// match in subject/authority chains but suggests specific hashing of DER
|
|
// bytes of public key including DER tags.
|
|
bs, err := x509.MarshalPKIXPublicKey(raw)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
kID := sha256.Sum256(bs)
|
|
return kID[:], nil
|
|
}
|
|
|
|
// EncodeSerialNumber encodes the given serial number as a colon-hex encoded
|
|
// string.
|
|
func EncodeSerialNumber(serial *big.Int) string {
|
|
return HexString(serial.Bytes())
|
|
}
|
|
|
|
// EncodeSigningKeyID encodes the given AuthorityKeyId or SubjectKeyId into a
|
|
// colon-hex encoded string suitable for using as a SigningKeyID value.
|
|
func EncodeSigningKeyID(keyID []byte) string { return HexString(keyID) }
|
|
|
|
// HexString returns a standard colon-separated hex value for the input
|
|
// byte slice. This should be used with cert serial numbers and so on.
|
|
func HexString(input []byte) string {
|
|
return strings.Replace(fmt.Sprintf("% x", input), " ", ":", -1)
|
|
}
|
|
|
|
// IsHexString returns true if the input is the output of HexString(). Meant
|
|
// for use in tests.
|
|
func IsHexString(input []byte) bool {
|
|
s := string(input)
|
|
if strings.Count(s, ":") < 5 { // 5 is arbitrary
|
|
return false
|
|
}
|
|
|
|
s = strings.ReplaceAll(s, ":", "")
|
|
_, err := hex.DecodeString(s)
|
|
return err == nil
|
|
}
|
|
|
|
// KeyInfoFromCert returns the key type and key bit length for the key used by
|
|
// the certificate.
|
|
func KeyInfoFromCert(cert *x509.Certificate) (keyType string, keyBits int, err error) {
|
|
switch k := cert.PublicKey.(type) {
|
|
case *ecdsa.PublicKey:
|
|
return "ec", k.Curve.Params().BitSize, nil
|
|
case *rsa.PublicKey:
|
|
return "rsa", k.N.BitLen(), nil
|
|
default:
|
|
return "", 0, fmt.Errorf("unsupported key type")
|
|
}
|
|
}
|