consul/agent/proxycfg/state.go

835 lines
26 KiB
Go

package proxycfg
import (
"context"
"errors"
"fmt"
"log"
"reflect"
"strings"
"time"
"github.com/hashicorp/consul/agent/cache"
cachetype "github.com/hashicorp/consul/agent/cache-types"
"github.com/hashicorp/consul/agent/structs"
"github.com/mitchellh/copystructure"
)
type CacheNotifier interface {
Notify(ctx context.Context, t string, r cache.Request,
correlationID string, ch chan<- cache.UpdateEvent) error
}
const (
coalesceTimeout = 200 * time.Millisecond
rootsWatchID = "roots"
leafWatchID = "leaf"
intentionsWatchID = "intentions"
serviceListWatchID = "service-list"
datacentersWatchID = "datacenters"
serviceResolversWatchID = "service-resolvers"
serviceIDPrefix = string(structs.UpstreamDestTypeService) + ":"
preparedQueryIDPrefix = string(structs.UpstreamDestTypePreparedQuery) + ":"
defaultPreparedQueryPollInterval = 30 * time.Second
)
// state holds all the state needed to maintain the config for a registered
// connect-proxy service. When a proxy registration is changed, the entire state
// is discarded and a new one created.
type state struct {
// logger, source and cache are required to be set before calling Watch.
logger *log.Logger
source *structs.QuerySource
cache CacheNotifier
// ctx and cancel store the context created during initWatches call
ctx context.Context
cancel func()
kind structs.ServiceKind
service string
proxyID string
address string
port int
taggedAddresses map[string]structs.ServiceAddress
proxyCfg structs.ConnectProxyConfig
token string
ch chan cache.UpdateEvent
snapCh chan ConfigSnapshot
reqCh chan chan *ConfigSnapshot
}
// newState populates the state struct by copying relevant fields from the
// NodeService and Token. We copy so that we can use them in a separate
// goroutine later without reasoning about races with the NodeService passed
// (especially for embedded fields like maps and slices).
//
// The returned state needs its required dependencies to be set before Watch
// can be called.
func newState(ns *structs.NodeService, token string) (*state, error) {
if ns.Kind != structs.ServiceKindConnectProxy && ns.Kind != structs.ServiceKindMeshGateway {
return nil, errors.New("not a connect-proxy or mesh-gateway")
}
// Copy the config map
proxyCfgRaw, err := copystructure.Copy(ns.Proxy)
if err != nil {
return nil, err
}
proxyCfg, ok := proxyCfgRaw.(structs.ConnectProxyConfig)
if !ok {
return nil, errors.New("failed to copy proxy config")
}
taggedAddresses := make(map[string]structs.ServiceAddress)
for k, v := range ns.TaggedAddresses {
taggedAddresses[k] = v
}
return &state{
kind: ns.Kind,
service: ns.Service,
proxyID: ns.ID,
address: ns.Address,
port: ns.Port,
taggedAddresses: taggedAddresses,
proxyCfg: proxyCfg,
token: token,
// 10 is fairly arbitrary here but allow for the 3 mandatory and a
// reasonable number of upstream watches to all deliver their initial
// messages in parallel without blocking the cache.Notify loops. It's not a
// huge deal if we do for a short period so we don't need to be more
// conservative to handle larger numbers of upstreams correctly but gives
// some head room for normal operation to be non-blocking in most typical
// cases.
ch: make(chan cache.UpdateEvent, 10),
snapCh: make(chan ConfigSnapshot, 1),
reqCh: make(chan chan *ConfigSnapshot, 1),
}, nil
}
// Watch initialized watches on all necessary cache data for the current proxy
// registration state and returns a chan to observe updates to the
// ConfigSnapshot that contains all necessary config state. The chan is closed
// when the state is Closed.
func (s *state) Watch() (<-chan ConfigSnapshot, error) {
s.ctx, s.cancel = context.WithCancel(context.Background())
err := s.initWatches()
if err != nil {
s.cancel()
return nil, err
}
go s.run()
return s.snapCh, nil
}
// Close discards the state and stops any long-running watches.
func (s *state) Close() error {
if s.cancel != nil {
s.cancel()
}
return nil
}
// initWatches sets up the watches needed for the particular service
func (s *state) initWatches() error {
switch s.kind {
case structs.ServiceKindConnectProxy:
return s.initWatchesConnectProxy()
case structs.ServiceKindMeshGateway:
return s.initWatchesMeshGateway()
default:
return fmt.Errorf("Unsupported service kind")
}
}
func (s *state) watchConnectProxyService(ctx context.Context, correlationId string, service string, dc string, filter string, meshGatewayMode structs.MeshGatewayMode) error {
switch meshGatewayMode {
case structs.MeshGatewayModeRemote:
return s.cache.Notify(ctx, cachetype.InternalServiceDumpName, &structs.ServiceDumpRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceKind: structs.ServiceKindMeshGateway,
UseServiceKind: true,
Source: *s.source,
}, correlationId, s.ch)
case structs.MeshGatewayModeLocal:
return s.cache.Notify(ctx, cachetype.InternalServiceDumpName, &structs.ServiceDumpRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceKind: structs.ServiceKindMeshGateway,
UseServiceKind: true,
Source: *s.source,
}, correlationId, s.ch)
default:
// This includes both the None and Default modes on purpose
return s.cache.Notify(ctx, cachetype.HealthServicesName, &structs.ServiceSpecificRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{
Token: s.token,
Filter: filter,
},
ServiceName: service,
Connect: true,
// Note that Identifier doesn't type-prefix for service any more as it's
// the default and makes metrics and other things much cleaner. It's
// simpler for us if we have the type to make things unambiguous.
Source: *s.source,
}, correlationId, s.ch)
}
}
// initWatchesConnectProxy sets up the watches needed based on current proxy registration
// state.
func (s *state) initWatchesConnectProxy() error {
// Watch for root changes
err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, rootsWatchID, s.ch)
if err != nil {
return err
}
// Watch the leaf cert
err = s.cache.Notify(s.ctx, cachetype.ConnectCALeafName, &cachetype.ConnectCALeafRequest{
Datacenter: s.source.Datacenter,
Token: s.token,
Service: s.proxyCfg.DestinationServiceName,
}, leafWatchID, s.ch)
if err != nil {
return err
}
// Watch for intention updates
err = s.cache.Notify(s.ctx, cachetype.IntentionMatchName, &structs.IntentionQueryRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Match: &structs.IntentionQueryMatch{
Type: structs.IntentionMatchDestination,
Entries: []structs.IntentionMatchEntry{
{
Namespace: structs.IntentionDefaultNamespace,
Name: s.proxyCfg.DestinationServiceName,
},
},
},
}, intentionsWatchID, s.ch)
if err != nil {
return err
}
// Watch for updates to service endpoints for all upstreams
for _, u := range s.proxyCfg.Upstreams {
dc := s.source.Datacenter
if u.Datacenter != "" {
// TODO(rb): if we ASK for a specific datacenter, do we still use the chain?
dc = u.Datacenter
}
switch u.DestinationType {
case structs.UpstreamDestTypePreparedQuery:
err = s.cache.Notify(s.ctx, cachetype.PreparedQueryName, &structs.PreparedQueryExecuteRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{Token: s.token, MaxAge: defaultPreparedQueryPollInterval},
QueryIDOrName: u.DestinationName,
Connect: true,
Source: *s.source,
}, "upstream:"+u.Identifier(), s.ch)
case structs.UpstreamDestTypeService:
fallthrough
case "": // Treat unset as the default Service type
// Determine if this should use a discovery chain.
//
// TODO(rb): reduce this list of exceptions
var shouldUseDiscoveryChain bool
if dc != s.source.Datacenter {
shouldUseDiscoveryChain = false
} else if u.DestinationNamespace != "" && u.DestinationNamespace != "default" {
shouldUseDiscoveryChain = false
} else {
shouldUseDiscoveryChain = true
}
if shouldUseDiscoveryChain {
// Watch for discovery chain configuration updates
err = s.cache.Notify(s.ctx, cachetype.CompiledDiscoveryChainName, &structs.DiscoveryChainRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{Token: s.token},
Name: u.DestinationName,
}, "discovery-chain:"+u.Identifier(), s.ch)
if err != nil {
return err
}
} else {
meshGateway := structs.MeshGatewayModeNone
// TODO (mesh-gateway)- maybe allow using a gateway within a datacenter at some point
if dc != s.source.Datacenter {
meshGateway = u.MeshGateway.Mode
}
if err := s.watchConnectProxyService(
s.ctx,
"upstream:"+serviceIDPrefix+u.Identifier(),
u.DestinationName,
dc,
"",
meshGateway,
); err != nil {
return err
}
}
default:
return fmt.Errorf("unknown upstream type: %q", u.DestinationType)
}
}
return nil
}
// initWatchesMeshGateway sets up the watches needed based on the current mesh gateway registration
func (s *state) initWatchesMeshGateway() error {
// Watch for root changes
err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, rootsWatchID, s.ch)
if err != nil {
return err
}
// Watch for all services
err = s.cache.Notify(s.ctx, cachetype.CatalogListServicesName, &structs.DCSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Source: *s.source,
}, serviceListWatchID, s.ch)
if err != nil {
return err
}
// Eventually we will have to watch connect enable instances for each service as well as the
// destination services themselves but those notifications will be setup later. However we
// cannot setup those watches until we know what the services are. from the service list
// watch above
err = s.cache.Notify(s.ctx, cachetype.CatalogDatacentersName, &structs.DatacentersRequest{
QueryOptions: structs.QueryOptions{Token: s.token, MaxAge: 30 * time.Second},
}, datacentersWatchID, s.ch)
// Once we start getting notified about the datacenters we will setup watches on the
// gateways within those other datacenters. We cannot do that here because we don't
// know what they are yet.
return err
}
func (s *state) initialConfigSnapshot() ConfigSnapshot {
snap := ConfigSnapshot{
Kind: s.kind,
Service: s.service,
ProxyID: s.proxyID,
Address: s.address,
Port: s.port,
TaggedAddresses: s.taggedAddresses,
Proxy: s.proxyCfg,
Datacenter: s.source.Datacenter,
}
switch s.kind {
case structs.ServiceKindConnectProxy:
snap.ConnectProxy.DiscoveryChain = make(map[string]*structs.CompiledDiscoveryChain)
snap.ConnectProxy.WatchedUpstreams = make(map[string]map[structs.DiscoveryTarget]context.CancelFunc)
snap.ConnectProxy.WatchedUpstreamEndpoints = make(map[string]map[structs.DiscoveryTarget]structs.CheckServiceNodes)
snap.ConnectProxy.UpstreamEndpoints = make(map[string]structs.CheckServiceNodes) // TODO(rb): deprecated
case structs.ServiceKindMeshGateway:
snap.MeshGateway.WatchedServices = make(map[string]context.CancelFunc)
snap.MeshGateway.WatchedDatacenters = make(map[string]context.CancelFunc)
snap.MeshGateway.ServiceGroups = make(map[string]structs.CheckServiceNodes)
snap.MeshGateway.GatewayGroups = make(map[string]structs.CheckServiceNodes)
// there is no need to initialize the map of service resolvers as we
// fully rebuild it every time we get updates
}
return snap
}
func (s *state) run() {
// Close the channel we return from Watch when we stop so consumers can stop
// watching and clean up their goroutines. It's important we do this here and
// not in Close since this routine sends on this chan and so might panic if it
// gets closed from another goroutine.
defer close(s.snapCh)
snap := s.initialConfigSnapshot()
// This turns out to be really fiddly/painful by just using time.Timer.C
// directly in the code below since you can't detect when a timer is stopped
// vs waiting in order to know to reset it. So just use a chan to send
// ourselves messages.
sendCh := make(chan struct{})
var coalesceTimer *time.Timer
for {
select {
case <-s.ctx.Done():
return
case u := <-s.ch:
if err := s.handleUpdate(u, &snap); err != nil {
s.logger.Printf("[ERR] %s watch error: %s", u.CorrelationID, err)
continue
}
case <-sendCh:
// Make a deep copy of snap so we don't mutate any of the embedded structs
// etc on future updates.
snapCopy, err := snap.Clone()
if err != nil {
s.logger.Printf("[ERR] Failed to copy config snapshot for proxy %s",
s.proxyID)
continue
}
s.snapCh <- *snapCopy
// Allow the next change to trigger a send
coalesceTimer = nil
// Skip rest of loop - there is nothing to send since nothing changed on
// this iteration
continue
case replyCh := <-s.reqCh:
if !snap.Valid() {
// Not valid yet just respond with nil and move on to next task.
replyCh <- nil
continue
}
// Make a deep copy of snap so we don't mutate any of the embedded structs
// etc on future updates.
snapCopy, err := snap.Clone()
if err != nil {
s.logger.Printf("[ERR] Failed to copy config snapshot for proxy %s",
s.proxyID)
continue
}
replyCh <- snapCopy
// Skip rest of loop - there is nothing to send since nothing changed on
// this iteration
continue
}
// Check if snap is complete enough to be a valid config to deliver to a
// proxy yet.
if snap.Valid() {
// Don't send it right away, set a short timer that will wait for updates
// from any of the other cache values and deliver them all together.
if coalesceTimer == nil {
coalesceTimer = time.AfterFunc(coalesceTimeout, func() {
// This runs in another goroutine so we can't just do the send
// directly here as access to snap is racy. Instead, signal the main
// loop above.
sendCh <- struct{}{}
})
}
}
}
}
func (s *state) handleUpdate(u cache.UpdateEvent, snap *ConfigSnapshot) error {
switch s.kind {
case structs.ServiceKindConnectProxy:
return s.handleUpdateConnectProxy(u, snap)
case structs.ServiceKindMeshGateway:
return s.handleUpdateMeshGateway(u, snap)
default:
return fmt.Errorf("Unsupported service kind")
}
}
func (s *state) handleUpdateConnectProxy(u cache.UpdateEvent, snap *ConfigSnapshot) error {
switch {
case u.CorrelationID == rootsWatchID:
roots, ok := u.Result.(*structs.IndexedCARoots)
if !ok {
return fmt.Errorf("invalid type for roots response: %T", u.Result)
}
snap.Roots = roots
case u.CorrelationID == leafWatchID:
leaf, ok := u.Result.(*structs.IssuedCert)
if !ok {
return fmt.Errorf("invalid type for leaf response: %T", u.Result)
}
snap.ConnectProxy.Leaf = leaf
case u.CorrelationID == intentionsWatchID:
// Not in snapshot currently, no op
case strings.HasPrefix(u.CorrelationID, "discovery-chain:"):
resp, ok := u.Result.(*structs.DiscoveryChainResponse)
if !ok {
return fmt.Errorf("invalid type for service response: %T", u.Result)
}
svc := strings.TrimPrefix(u.CorrelationID, "discovery-chain:")
snap.ConnectProxy.DiscoveryChain[svc] = resp.Chain
if err := s.resetWatchesFromChain(svc, resp.Chain, snap); err != nil {
return err
}
case strings.HasPrefix(u.CorrelationID, "upstream-target:"):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for service response: %T", u.Result)
}
correlationID := strings.TrimPrefix(u.CorrelationID, "upstream-target:")
encTarget, svc, ok := removeColonPrefix(correlationID)
if !ok {
return fmt.Errorf("invalid correlation id %q", u.CorrelationID)
}
target := structs.DiscoveryTarget{}
if err := target.UnmarshalText([]byte(encTarget)); err != nil {
return fmt.Errorf("invalid correlation id %q: %v", u.CorrelationID, err)
}
m, ok := snap.ConnectProxy.WatchedUpstreamEndpoints[svc]
if !ok {
m = make(map[structs.DiscoveryTarget]structs.CheckServiceNodes)
snap.ConnectProxy.WatchedUpstreamEndpoints[svc] = m
}
snap.ConnectProxy.WatchedUpstreamEndpoints[svc][target] = resp.Nodes
case strings.HasPrefix(u.CorrelationID, "upstream:"+serviceIDPrefix):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for service response: %T", u.Result)
}
svc := strings.TrimPrefix(u.CorrelationID, "upstream:"+serviceIDPrefix)
snap.ConnectProxy.UpstreamEndpoints[svc] = resp.Nodes
case strings.HasPrefix(u.CorrelationID, "upstream:"+preparedQueryIDPrefix):
resp, ok := u.Result.(*structs.PreparedQueryExecuteResponse)
if !ok {
return fmt.Errorf("invalid type for prepared query response: %T", u.Result)
}
pq := strings.TrimPrefix(u.CorrelationID, "upstream:")
snap.ConnectProxy.UpstreamEndpoints[pq] = resp.Nodes
default:
return errors.New("unknown correlation ID")
}
return nil
}
func removeColonPrefix(s string) (string, string, bool) {
idx := strings.Index(s, ":")
if idx == -1 {
return "", "", false
}
return s[0:idx], s[idx+1:], true
}
func (s *state) resetWatchesFromChain(
id string,
chain *structs.CompiledDiscoveryChain,
snap *ConfigSnapshot,
) error {
if chain == nil {
return fmt.Errorf("not possible to arrive here with no discovery chain")
}
// Collect all sorts of catalog queries we'll have to run.
targets := make(map[structs.DiscoveryTarget]*structs.ServiceResolverConfigEntry)
addTarget := func(target structs.DiscoveryTarget) error {
resolver, ok := chain.Resolvers[target.Service]
if !ok {
return fmt.Errorf("missing resolver %q for target %s", target.Service, target)
}
targets[target] = resolver
return nil
}
// NOTE: We will NEVER see a missing chain, because we always request it with defaulting enabled.
meshGatewayModes := make(map[structs.DiscoveryTarget]structs.MeshGatewayMode)
for _, group := range chain.GroupResolverNodes {
groupResolver := group.GroupResolver
meshGatewayModes[groupResolver.Target] = groupResolver.MeshGateway.Mode
if err := addTarget(groupResolver.Target); err != nil {
return err
}
if groupResolver.Failover != nil {
for _, target := range groupResolver.Failover.Targets {
if err := addTarget(target); err != nil {
return err
}
}
}
}
// Initialize relevant sub maps.
if _, ok := snap.ConnectProxy.WatchedUpstreams[id]; !ok {
snap.ConnectProxy.WatchedUpstreams[id] = make(map[structs.DiscoveryTarget]context.CancelFunc)
}
if _, ok := snap.ConnectProxy.WatchedUpstreamEndpoints[id]; !ok {
// TODO(rb): does this belong here?
snap.ConnectProxy.WatchedUpstreamEndpoints[id] = make(map[structs.DiscoveryTarget]structs.CheckServiceNodes)
}
// We could invalidate this selectively based on a hash of the relevant
// resolver information, but for now just reset anything about this
// upstream when the chain changes in any way.
//
// TODO(rb): content hash based add/remove
for target, cancelFn := range snap.ConnectProxy.WatchedUpstreams[id] {
s.logger.Printf("[TRACE] proxycfg: upstream=%q:chain=%q: stopping watch of target %s", id, chain.ServiceName, target)
delete(snap.ConnectProxy.WatchedUpstreams[id], target)
delete(snap.ConnectProxy.WatchedUpstreamEndpoints[id], target) // TODO(rb): safe?
cancelFn()
}
for target, resolver := range targets {
if target.Service != resolver.Name {
panic(target.Service + " != " + resolver.Name) // TODO(rb): remove
}
s.logger.Printf("[TRACE] proxycfg: upstream=%q:chain=%q: initializing watch of target %s", id, chain.ServiceName, target)
// TODO(rb): make sure the cross-dc request properly fills in the alternate datacenters
var subset structs.ServiceResolverSubset
if target.ServiceSubset != "" {
var ok bool
subset, ok = resolver.Subsets[target.ServiceSubset]
if !ok {
// Not possible really.
return fmt.Errorf("target %s cannot be resolved; service %q does not have a subset named %q", target, target.Service, target.ServiceSubset)
}
}
encodedTarget, err := target.MarshalText()
if err != nil {
return fmt.Errorf("target %s cannot be converted into a cache key string: %v", target, err)
}
ctx, cancel := context.WithCancel(s.ctx)
meshGateway := structs.MeshGatewayModeDefault
if target.Datacenter != s.source.Datacenter {
meshGateway = meshGatewayModes[target]
if meshGateway == structs.MeshGatewayModeDefault {
meshGateway = s.proxyCfg.MeshGateway.Mode
}
}
// if the default mode
if meshGateway == structs.MeshGatewayModeDefault {
meshGateway = structs.MeshGatewayModeNone
}
err = s.watchConnectProxyService(
ctx,
"upstream-target:"+string(encodedTarget)+":"+id,
target.Service,
target.Datacenter,
subset.Filter,
meshGateway,
)
if err != nil {
cancel()
return err
}
snap.ConnectProxy.WatchedUpstreams[id][target] = cancel
}
return nil
}
func (s *state) handleUpdateMeshGateway(u cache.UpdateEvent, snap *ConfigSnapshot) error {
switch u.CorrelationID {
case rootsWatchID:
roots, ok := u.Result.(*structs.IndexedCARoots)
if !ok {
return fmt.Errorf("invalid type for roots response: %T", u.Result)
}
snap.Roots = roots
case serviceListWatchID:
services, ok := u.Result.(*structs.IndexedServices)
if !ok {
return fmt.Errorf("invalid type for services response: %T", u.Result)
}
for svcName := range services.Services {
if _, ok := snap.MeshGateway.WatchedServices[svcName]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.HealthServicesName, &structs.ServiceSpecificRequest{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceName: svcName,
Connect: true,
}, fmt.Sprintf("connect-service:%s", svcName), s.ch)
if err != nil {
s.logger.Printf("[ERR] mesh-gateway: failed to register watch for connect-service:%s", svcName)
cancel()
return err
}
err = s.cache.Notify(ctx, cachetype.ConfigEntriesName, &structs.ConfigEntryQuery{
Datacenter: s.source.Datacenter,
QueryOptions: structs.QueryOptions{Token: s.token},
Kind: structs.ServiceResolver,
}, serviceResolversWatchID, s.ch)
if err != nil {
s.logger.Printf("[ERR] mesh-gateway: failed to register watch for service-resolver config entries")
cancel()
return err
}
snap.MeshGateway.WatchedServices[svcName] = cancel
}
}
for svcName, cancelFn := range snap.MeshGateway.WatchedServices {
if _, ok := services.Services[svcName]; !ok {
delete(snap.MeshGateway.WatchedServices, svcName)
cancelFn()
}
}
case datacentersWatchID:
datacentersRaw, ok := u.Result.(*[]string)
if !ok {
return fmt.Errorf("invalid type for datacenters response: %T", u.Result)
}
if datacentersRaw == nil {
return fmt.Errorf("invalid response with a nil datacenter list")
}
datacenters := *datacentersRaw
for _, dc := range datacenters {
if dc == s.source.Datacenter {
continue
}
if _, ok := snap.MeshGateway.WatchedDatacenters[dc]; !ok {
ctx, cancel := context.WithCancel(s.ctx)
err := s.cache.Notify(ctx, cachetype.InternalServiceDumpName, &structs.ServiceDumpRequest{
Datacenter: dc,
QueryOptions: structs.QueryOptions{Token: s.token},
ServiceKind: structs.ServiceKindMeshGateway,
UseServiceKind: true,
Source: *s.source,
}, fmt.Sprintf("mesh-gateway:%s", dc), s.ch)
if err != nil {
s.logger.Printf("[ERR] mesh-gateway: failed to register watch for mesh-gateway:%s", dc)
cancel()
return err
}
snap.MeshGateway.WatchedDatacenters[dc] = cancel
}
}
for dc, cancelFn := range snap.MeshGateway.WatchedDatacenters {
found := false
for _, dcCurrent := range datacenters {
if dcCurrent == dc {
found = true
break
}
}
if !found {
delete(snap.MeshGateway.WatchedDatacenters, dc)
cancelFn()
}
}
case serviceResolversWatchID:
configEntries, ok := u.Result.(*structs.IndexedConfigEntries)
if !ok {
return fmt.Errorf("invalid type for services response: %T", u.Result)
}
resolvers := make(map[string]*structs.ServiceResolverConfigEntry)
for _, entry := range configEntries.Entries {
if resolver, ok := entry.(*structs.ServiceResolverConfigEntry); ok {
resolvers[resolver.Name] = resolver
}
}
snap.MeshGateway.ServiceResolvers = resolvers
default:
switch {
case strings.HasPrefix(u.CorrelationID, "connect-service:"):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for service response: %T", u.Result)
}
svc := strings.TrimPrefix(u.CorrelationID, "connect-service:")
if len(resp.Nodes) > 0 {
snap.MeshGateway.ServiceGroups[svc] = resp.Nodes
} else if _, ok := snap.MeshGateway.ServiceGroups[svc]; ok {
delete(snap.MeshGateway.ServiceGroups, svc)
}
case strings.HasPrefix(u.CorrelationID, "mesh-gateway:"):
resp, ok := u.Result.(*structs.IndexedCheckServiceNodes)
if !ok {
return fmt.Errorf("invalid type for service response: %T", u.Result)
}
dc := strings.TrimPrefix(u.CorrelationID, "mesh-gateway:")
if len(resp.Nodes) > 0 {
snap.MeshGateway.GatewayGroups[dc] = resp.Nodes
} else if _, ok := snap.MeshGateway.GatewayGroups[dc]; ok {
delete(snap.MeshGateway.GatewayGroups, dc)
}
default:
// do nothing for now
}
}
return nil
}
// CurrentSnapshot synchronously returns the current ConfigSnapshot if there is
// one ready. If we don't have one yet because not all necessary parts have been
// returned (i.e. both roots and leaf cert), nil is returned.
func (s *state) CurrentSnapshot() *ConfigSnapshot {
// Make a chan for the response to be sent on
ch := make(chan *ConfigSnapshot, 1)
s.reqCh <- ch
// Wait for the response
return <-ch
}
// Changed returns whether or not the passed NodeService has had any of the
// fields we care about for config state watching changed or a different token.
func (s *state) Changed(ns *structs.NodeService, token string) bool {
if ns == nil {
return true
}
return ns.Kind != s.kind ||
s.proxyID != ns.ID ||
s.address != ns.Address ||
s.port != ns.Port ||
!reflect.DeepEqual(s.proxyCfg, ns.Proxy) ||
s.token != token
}