mirror of
https://github.com/status-im/consul.git
synced 2025-01-11 22:34:55 +00:00
677d6dac80
These were only added as SPIFFE intends to use the in the future but currently does not mandate their usage due to patch support in common TLS implementations and some ambiguity over how to use them with URI SAN certificates. We included them because until now everything seem fine with it, however we've found the latest version of `openssl` (1.1.0h) fails to validate our certificats if its enabled. LibreSSL as installed on OS X by default doesn’t have these issues. For now it's most compatible not to have them and later we can find ways to add constraints with wider compatibility testing.
333 lines
10 KiB
Go
333 lines
10 KiB
Go
package connect
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto"
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/rand"
|
|
"crypto/x509"
|
|
"crypto/x509/pkix"
|
|
"encoding/pem"
|
|
"fmt"
|
|
"math/big"
|
|
"net/url"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/hashicorp/consul/agent/structs"
|
|
"github.com/hashicorp/go-uuid"
|
|
"github.com/mitchellh/go-testing-interface"
|
|
)
|
|
|
|
// TestClusterID is the Consul cluster ID for testing.
|
|
const TestClusterID = "11111111-2222-3333-4444-555555555555"
|
|
|
|
// testCACounter is just an atomically incremented counter for creating
|
|
// unique names for the CA certs.
|
|
var testCACounter uint64
|
|
|
|
// TestCA creates a test CA certificate and signing key and returns it
|
|
// in the CARoot structure format. The returned CA will be set as Active = true.
|
|
//
|
|
// If xc is non-nil, then the returned certificate will have a signing cert
|
|
// that is cross-signed with the previous cert, and this will be set as
|
|
// SigningCert.
|
|
func TestCA(t testing.T, xc *structs.CARoot) *structs.CARoot {
|
|
var result structs.CARoot
|
|
result.Active = true
|
|
result.Name = fmt.Sprintf("Test CA %d", atomic.AddUint64(&testCACounter, 1))
|
|
|
|
// Create the private key we'll use for this CA cert.
|
|
signer, keyPEM := testPrivateKey(t)
|
|
result.SigningKey = keyPEM
|
|
|
|
// The serial number for the cert
|
|
sn, err := testSerialNumber()
|
|
if err != nil {
|
|
t.Fatalf("error generating serial number: %s", err)
|
|
}
|
|
|
|
// The URI (SPIFFE compatible) for the cert
|
|
id := &SpiffeIDSigning{ClusterID: TestClusterID, Domain: "consul"}
|
|
|
|
// Create the CA cert
|
|
template := x509.Certificate{
|
|
SerialNumber: sn,
|
|
Subject: pkix.Name{CommonName: result.Name},
|
|
URIs: []*url.URL{id.URI()},
|
|
BasicConstraintsValid: true,
|
|
KeyUsage: x509.KeyUsageCertSign |
|
|
x509.KeyUsageCRLSign |
|
|
x509.KeyUsageDigitalSignature,
|
|
IsCA: true,
|
|
NotAfter: time.Now().Add(10 * 365 * 24 * time.Hour),
|
|
NotBefore: time.Now(),
|
|
AuthorityKeyId: testKeyID(t, signer.Public()),
|
|
SubjectKeyId: testKeyID(t, signer.Public()),
|
|
}
|
|
|
|
bs, err := x509.CreateCertificate(
|
|
rand.Reader, &template, &template, signer.Public(), signer)
|
|
if err != nil {
|
|
t.Fatalf("error generating CA certificate: %s", err)
|
|
}
|
|
|
|
var buf bytes.Buffer
|
|
err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs})
|
|
if err != nil {
|
|
t.Fatalf("error encoding private key: %s", err)
|
|
}
|
|
result.RootCert = buf.String()
|
|
result.ID, err = CalculateCertFingerprint(result.RootCert)
|
|
if err != nil {
|
|
t.Fatalf("error generating CA ID fingerprint: %s", err)
|
|
}
|
|
|
|
// If there is a prior CA to cross-sign with, then we need to create that
|
|
// and set it as the signing cert.
|
|
if xc != nil {
|
|
xccert, err := ParseCert(xc.RootCert)
|
|
if err != nil {
|
|
t.Fatalf("error parsing CA cert: %s", err)
|
|
}
|
|
xcsigner, err := ParseSigner(xc.SigningKey)
|
|
if err != nil {
|
|
t.Fatalf("error parsing signing key: %s", err)
|
|
}
|
|
|
|
// Set the authority key to be the previous one.
|
|
// NOTE(mitchellh): From Paul Banks: if we have to cross-sign a cert
|
|
// that came from outside (e.g. vault) we can't rely on them using the
|
|
// same KeyID hashing algo we do so we'd need to actually copy this
|
|
// from the xc cert's subjectKeyIdentifier extension.
|
|
template.AuthorityKeyId = testKeyID(t, xcsigner.Public())
|
|
|
|
// Create the new certificate where the parent is the previous
|
|
// CA, the public key is the new public key, and the signing private
|
|
// key is the old private key.
|
|
bs, err := x509.CreateCertificate(
|
|
rand.Reader, &template, xccert, signer.Public(), xcsigner)
|
|
if err != nil {
|
|
t.Fatalf("error generating CA certificate: %s", err)
|
|
}
|
|
|
|
var buf bytes.Buffer
|
|
err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs})
|
|
if err != nil {
|
|
t.Fatalf("error encoding private key: %s", err)
|
|
}
|
|
result.SigningCert = buf.String()
|
|
}
|
|
|
|
return &result
|
|
}
|
|
|
|
// TestLeaf returns a valid leaf certificate and it's private key for the named
|
|
// service with the given CA Root.
|
|
func TestLeaf(t testing.T, service string, root *structs.CARoot) (string, string) {
|
|
// Parse the CA cert and signing key from the root
|
|
cert := root.SigningCert
|
|
if cert == "" {
|
|
cert = root.RootCert
|
|
}
|
|
caCert, err := ParseCert(cert)
|
|
if err != nil {
|
|
t.Fatalf("error parsing CA cert: %s", err)
|
|
}
|
|
caSigner, err := ParseSigner(root.SigningKey)
|
|
if err != nil {
|
|
t.Fatalf("error parsing signing key: %s", err)
|
|
}
|
|
|
|
// Build the SPIFFE ID
|
|
spiffeId := &SpiffeIDService{
|
|
Host: fmt.Sprintf("%s.consul", TestClusterID),
|
|
Namespace: "default",
|
|
Datacenter: "dc1",
|
|
Service: service,
|
|
}
|
|
|
|
// The serial number for the cert
|
|
sn, err := testSerialNumber()
|
|
if err != nil {
|
|
t.Fatalf("error generating serial number: %s", err)
|
|
}
|
|
|
|
// Generate fresh private key
|
|
pkSigner, pkPEM, err := GeneratePrivateKey()
|
|
if err != nil {
|
|
t.Fatalf("failed to generate private key: %s", err)
|
|
}
|
|
|
|
// Cert template for generation
|
|
template := x509.Certificate{
|
|
SerialNumber: sn,
|
|
Subject: pkix.Name{CommonName: service},
|
|
URIs: []*url.URL{spiffeId.URI()},
|
|
SignatureAlgorithm: x509.ECDSAWithSHA256,
|
|
BasicConstraintsValid: true,
|
|
KeyUsage: x509.KeyUsageDataEncipherment |
|
|
x509.KeyUsageKeyAgreement |
|
|
x509.KeyUsageDigitalSignature |
|
|
x509.KeyUsageKeyEncipherment,
|
|
ExtKeyUsage: []x509.ExtKeyUsage{
|
|
x509.ExtKeyUsageClientAuth,
|
|
x509.ExtKeyUsageServerAuth,
|
|
},
|
|
NotAfter: time.Now().Add(10 * 365 * 24 * time.Hour),
|
|
NotBefore: time.Now(),
|
|
AuthorityKeyId: testKeyID(t, caSigner.Public()),
|
|
SubjectKeyId: testKeyID(t, pkSigner.Public()),
|
|
}
|
|
|
|
// Create the certificate, PEM encode it and return that value.
|
|
var buf bytes.Buffer
|
|
bs, err := x509.CreateCertificate(
|
|
rand.Reader, &template, caCert, pkSigner.Public(), caSigner)
|
|
if err != nil {
|
|
t.Fatalf("error generating certificate: %s", err)
|
|
}
|
|
err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs})
|
|
if err != nil {
|
|
t.Fatalf("error encoding private key: %s", err)
|
|
}
|
|
|
|
return buf.String(), pkPEM
|
|
}
|
|
|
|
// TestCSR returns a CSR to sign the given service along with the PEM-encoded
|
|
// private key for this certificate.
|
|
func TestCSR(t testing.T, uri CertURI) (string, string) {
|
|
template := &x509.CertificateRequest{
|
|
URIs: []*url.URL{uri.URI()},
|
|
SignatureAlgorithm: x509.ECDSAWithSHA256,
|
|
}
|
|
|
|
// Create the private key we'll use
|
|
signer, pkPEM := testPrivateKey(t)
|
|
|
|
// Create the CSR itself
|
|
var csrBuf bytes.Buffer
|
|
bs, err := x509.CreateCertificateRequest(rand.Reader, template, signer)
|
|
if err != nil {
|
|
t.Fatalf("error creating CSR: %s", err)
|
|
}
|
|
|
|
err = pem.Encode(&csrBuf, &pem.Block{Type: "CERTIFICATE REQUEST", Bytes: bs})
|
|
if err != nil {
|
|
t.Fatalf("error encoding CSR: %s", err)
|
|
}
|
|
|
|
return csrBuf.String(), pkPEM
|
|
}
|
|
|
|
// testKeyID returns a KeyID from the given public key. This just calls
|
|
// KeyId but handles errors for tests.
|
|
func testKeyID(t testing.T, raw interface{}) []byte {
|
|
result, err := KeyId(raw)
|
|
if err != nil {
|
|
t.Fatalf("KeyId error: %s", err)
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// testPrivateKey creates an ECDSA based private key. Both a crypto.Signer and
|
|
// the key in PEM form are returned.
|
|
//
|
|
// NOTE(banks): this was memoized to save entropy during tests but it turns out
|
|
// crypto/rand will never block and always reads from /dev/urandom on unix OSes
|
|
// which does not consume entropy.
|
|
//
|
|
// If we find by profiling it's taking a lot of cycles we could optimise/cache
|
|
// again but we at least need to use different keys for each distinct CA (when
|
|
// multiple CAs are generated at once e.g. to test cross-signing) and a
|
|
// different one again for the leafs otherwise we risk tests that have false
|
|
// positives since signatures from different logical cert's keys are
|
|
// indistinguishable, but worse we build validation chains using AuthorityKeyID
|
|
// which will be the same for multiple CAs/Leafs. Also note that our UUID
|
|
// generator also reads from crypto rand and is called far more often during
|
|
// tests than this will be.
|
|
func testPrivateKey(t testing.T) (crypto.Signer, string) {
|
|
pk, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
|
|
if err != nil {
|
|
t.Fatalf("error generating private key: %s", err)
|
|
}
|
|
|
|
bs, err := x509.MarshalECPrivateKey(pk)
|
|
if err != nil {
|
|
t.Fatalf("error generating private key: %s", err)
|
|
}
|
|
|
|
var buf bytes.Buffer
|
|
err = pem.Encode(&buf, &pem.Block{Type: "EC PRIVATE KEY", Bytes: bs})
|
|
if err != nil {
|
|
t.Fatalf("error encoding private key: %s", err)
|
|
}
|
|
|
|
return pk, buf.String()
|
|
}
|
|
|
|
// testSerialNumber generates a serial number suitable for a certificate.
|
|
// For testing, this just sets it to a random number.
|
|
//
|
|
// This function is taken directly from the Vault implementation.
|
|
func testSerialNumber() (*big.Int, error) {
|
|
return rand.Int(rand.Reader, (&big.Int{}).Exp(big.NewInt(2), big.NewInt(159), nil))
|
|
}
|
|
|
|
// testUUID generates a UUID for testing.
|
|
func testUUID(t testing.T) string {
|
|
ret, err := uuid.GenerateUUID()
|
|
if err != nil {
|
|
t.Fatalf("Unable to generate a UUID, %s", err)
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// TestAgentRPC is an interface that an RPC client must implement. This is a
|
|
// helper interface that is implemented by the agent delegate so that test
|
|
// helpers can make RPCs without introducing an import cycle on `agent`.
|
|
type TestAgentRPC interface {
|
|
RPC(method string, args interface{}, reply interface{}) error
|
|
}
|
|
|
|
// TestCAConfigSet sets a CARoot returned by TestCA into the TestAgent state. It
|
|
// requires that TestAgent had connect enabled in it's config. If ca is nil, a
|
|
// new CA is created.
|
|
//
|
|
// It returns the CARoot passed or created.
|
|
//
|
|
// Note that we have to use an interface for the TestAgent.RPC method since we
|
|
// can't introduce an import cycle by importing `agent.TestAgent` here directly.
|
|
// It also means this will work in a few other places we mock that method.
|
|
func TestCAConfigSet(t testing.T, a TestAgentRPC,
|
|
ca *structs.CARoot) *structs.CARoot {
|
|
t.Helper()
|
|
|
|
if ca == nil {
|
|
ca = TestCA(t, nil)
|
|
}
|
|
newConfig := &structs.CAConfiguration{
|
|
Provider: "consul",
|
|
Config: map[string]interface{}{
|
|
"PrivateKey": ca.SigningKey,
|
|
"RootCert": ca.RootCert,
|
|
"RotationPeriod": 180 * 24 * time.Hour,
|
|
},
|
|
}
|
|
args := &structs.CARequest{
|
|
Datacenter: "dc1",
|
|
Config: newConfig,
|
|
}
|
|
var reply interface{}
|
|
|
|
err := a.RPC("ConnectCA.ConfigurationSet", args, &reply)
|
|
if err != nil {
|
|
t.Fatalf("failed to set test CA config: %s", err)
|
|
}
|
|
return ca
|
|
}
|