2018-01-04 16:42:30 -05:00

335 lines
7.9 KiB
Go

/*
*
* Copyright 2014 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package transport
import (
"fmt"
"io"
"math"
"sync"
"time"
"golang.org/x/net/http2"
"golang.org/x/net/http2/hpack"
)
const (
// The default value of flow control window size in HTTP2 spec.
defaultWindowSize = 65535
// The initial window size for flow control.
initialWindowSize = defaultWindowSize // for an RPC
infinity = time.Duration(math.MaxInt64)
defaultClientKeepaliveTime = infinity
defaultClientKeepaliveTimeout = time.Duration(20 * time.Second)
defaultMaxStreamsClient = 100
defaultMaxConnectionIdle = infinity
defaultMaxConnectionAge = infinity
defaultMaxConnectionAgeGrace = infinity
defaultServerKeepaliveTime = time.Duration(2 * time.Hour)
defaultServerKeepaliveTimeout = time.Duration(20 * time.Second)
defaultKeepalivePolicyMinTime = time.Duration(5 * time.Minute)
// max window limit set by HTTP2 Specs.
maxWindowSize = math.MaxInt32
// defaultLocalSendQuota sets is default value for number of data
// bytes that each stream can schedule before some of it being
// flushed out.
defaultLocalSendQuota = 128 * 1024
)
// The following defines various control items which could flow through
// the control buffer of transport. They represent different aspects of
// control tasks, e.g., flow control, settings, streaming resetting, etc.
type headerFrame struct {
streamID uint32
hf []hpack.HeaderField
endStream bool
}
func (*headerFrame) item() {}
type continuationFrame struct {
streamID uint32
endHeaders bool
headerBlockFragment []byte
}
type dataFrame struct {
streamID uint32
endStream bool
d []byte
f func()
}
func (*dataFrame) item() {}
func (*continuationFrame) item() {}
type windowUpdate struct {
streamID uint32
increment uint32
}
func (*windowUpdate) item() {}
type settings struct {
ss []http2.Setting
}
func (*settings) item() {}
type settingsAck struct {
}
func (*settingsAck) item() {}
type resetStream struct {
streamID uint32
code http2.ErrCode
}
func (*resetStream) item() {}
type goAway struct {
code http2.ErrCode
debugData []byte
headsUp bool
closeConn bool
}
func (*goAway) item() {}
type flushIO struct {
closeTr bool
}
func (*flushIO) item() {}
type ping struct {
ack bool
data [8]byte
}
func (*ping) item() {}
// quotaPool is a pool which accumulates the quota and sends it to acquire()
// when it is available.
type quotaPool struct {
mu sync.Mutex
c chan struct{}
version uint32
quota int
}
// newQuotaPool creates a quotaPool which has quota q available to consume.
func newQuotaPool(q int) *quotaPool {
qb := &quotaPool{
quota: q,
c: make(chan struct{}, 1),
}
return qb
}
// add cancels the pending quota sent on acquired, incremented by v and sends
// it back on acquire.
func (qb *quotaPool) add(v int) {
qb.mu.Lock()
defer qb.mu.Unlock()
qb.lockedAdd(v)
}
func (qb *quotaPool) lockedAdd(v int) {
var wakeUp bool
if qb.quota <= 0 {
wakeUp = true // Wake up potential waiters.
}
qb.quota += v
if wakeUp && qb.quota > 0 {
select {
case qb.c <- struct{}{}:
default:
}
}
}
func (qb *quotaPool) addAndUpdate(v int) {
qb.mu.Lock()
qb.lockedAdd(v)
qb.version++
qb.mu.Unlock()
}
func (qb *quotaPool) get(v int, wc waiters) (int, uint32, error) {
qb.mu.Lock()
if qb.quota > 0 {
if v > qb.quota {
v = qb.quota
}
qb.quota -= v
ver := qb.version
qb.mu.Unlock()
return v, ver, nil
}
qb.mu.Unlock()
for {
select {
case <-wc.ctx.Done():
return 0, 0, ContextErr(wc.ctx.Err())
case <-wc.tctx.Done():
return 0, 0, ErrConnClosing
case <-wc.done:
return 0, 0, io.EOF
case <-wc.goAway:
return 0, 0, errStreamDrain
case <-qb.c:
qb.mu.Lock()
if qb.quota > 0 {
if v > qb.quota {
v = qb.quota
}
qb.quota -= v
ver := qb.version
if qb.quota > 0 {
select {
case qb.c <- struct{}{}:
default:
}
}
qb.mu.Unlock()
return v, ver, nil
}
qb.mu.Unlock()
}
}
}
func (qb *quotaPool) compareAndExecute(version uint32, success, failure func()) bool {
qb.mu.Lock()
if version == qb.version {
success()
qb.mu.Unlock()
return true
}
failure()
qb.mu.Unlock()
return false
}
// inFlow deals with inbound flow control
type inFlow struct {
mu sync.Mutex
// The inbound flow control limit for pending data.
limit uint32
// pendingData is the overall data which have been received but not been
// consumed by applications.
pendingData uint32
// The amount of data the application has consumed but grpc has not sent
// window update for them. Used to reduce window update frequency.
pendingUpdate uint32
// delta is the extra window update given by receiver when an application
// is reading data bigger in size than the inFlow limit.
delta uint32
}
// newLimit updates the inflow window to a new value n.
// It assumes that n is always greater than the old limit.
func (f *inFlow) newLimit(n uint32) uint32 {
f.mu.Lock()
defer f.mu.Unlock()
d := n - f.limit
f.limit = n
return d
}
func (f *inFlow) maybeAdjust(n uint32) uint32 {
if n > uint32(math.MaxInt32) {
n = uint32(math.MaxInt32)
}
f.mu.Lock()
defer f.mu.Unlock()
// estSenderQuota is the receiver's view of the maximum number of bytes the sender
// can send without a window update.
estSenderQuota := int32(f.limit - (f.pendingData + f.pendingUpdate))
// estUntransmittedData is the maximum number of bytes the sends might not have put
// on the wire yet. A value of 0 or less means that we have already received all or
// more bytes than the application is requesting to read.
estUntransmittedData := int32(n - f.pendingData) // Casting into int32 since it could be negative.
// This implies that unless we send a window update, the sender won't be able to send all the bytes
// for this message. Therefore we must send an update over the limit since there's an active read
// request from the application.
if estUntransmittedData > estSenderQuota {
// Sender's window shouldn't go more than 2^31 - 1 as speecified in the HTTP spec.
if f.limit+n > maxWindowSize {
f.delta = maxWindowSize - f.limit
} else {
// Send a window update for the whole message and not just the difference between
// estUntransmittedData and estSenderQuota. This will be helpful in case the message
// is padded; We will fallback on the current available window(at least a 1/4th of the limit).
f.delta = n
}
return f.delta
}
return 0
}
// onData is invoked when some data frame is received. It updates pendingData.
func (f *inFlow) onData(n uint32) error {
f.mu.Lock()
defer f.mu.Unlock()
f.pendingData += n
if f.pendingData+f.pendingUpdate > f.limit+f.delta {
return fmt.Errorf("received %d-bytes data exceeding the limit %d bytes", f.pendingData+f.pendingUpdate, f.limit)
}
return nil
}
// onRead is invoked when the application reads the data. It returns the window size
// to be sent to the peer.
func (f *inFlow) onRead(n uint32) uint32 {
f.mu.Lock()
defer f.mu.Unlock()
if f.pendingData == 0 {
return 0
}
f.pendingData -= n
if n > f.delta {
n -= f.delta
f.delta = 0
} else {
f.delta -= n
n = 0
}
f.pendingUpdate += n
if f.pendingUpdate >= f.limit/4 {
wu := f.pendingUpdate
f.pendingUpdate = 0
return wu
}
return 0
}
func (f *inFlow) resetPendingUpdate() uint32 {
f.mu.Lock()
defer f.mu.Unlock()
n := f.pendingUpdate
f.pendingUpdate = 0
return n
}