consul/agent/grpc-external/services/peerstream/replication.go

676 lines
22 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: BUSL-1.1
package peerstream
import (
"errors"
"fmt"
"strings"
"google.golang.org/genproto/googleapis/rpc/code"
"google.golang.org/protobuf/proto"
newproto "google.golang.org/protobuf/proto"
"google.golang.org/protobuf/types/known/anypb"
"github.com/hashicorp/consul/acl"
"github.com/hashicorp/consul/agent/cache"
"github.com/hashicorp/consul/agent/consul/state"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/proto/private/pbpeering"
"github.com/hashicorp/consul/proto/private/pbpeerstream"
"github.com/hashicorp/consul/proto/private/pbservice"
"github.com/hashicorp/consul/proto/private/pbstatus"
"github.com/hashicorp/consul/types"
)
/*
TODO(peering):
Then if we ever fail to apply a replication message we should either tear
down the entire connection (and thus force a resync on reconnect) or
request a resync operation.
*/
// makeExportedServiceListResponse handles preparing exported service list updates to the peer cluster.
// Each cache.UpdateEvent will contain all exported services.
func makeExportedServiceListResponse(
mst *MutableStatus,
update cache.UpdateEvent,
) (*pbpeerstream.ReplicationMessage_Response, error) {
exportedService, ok := update.Result.(*pbpeerstream.ExportedServiceList)
if !ok {
return nil, fmt.Errorf("invalid type for exported service list response: %T", update.Result)
}
any, _, err := marshalToProtoAny[*pbpeerstream.ExportedServiceList](exportedService)
if err != nil {
return nil, fmt.Errorf("failed to marshal: %w", err)
}
var serviceNames []structs.ServiceName
for _, serviceName := range exportedService.Services {
sn := structs.ServiceNameFromString(serviceName)
serviceNames = append(serviceNames, sn)
}
mst.SetExportedServices(serviceNames)
return &pbpeerstream.ReplicationMessage_Response{
ResourceURL: pbpeerstream.TypeURLExportedServiceList,
ResourceID: subExportedServiceList,
Operation: pbpeerstream.Operation_OPERATION_UPSERT,
Resource: any,
}, nil
}
// makeServiceResponse handles preparing exported service instance updates to the peer cluster.
// Each cache.UpdateEvent will contain all instances for a service name.
// If there are no instances in the event, we consider that to be a de-registration.
func makeServiceResponse(update cache.UpdateEvent) (*pbpeerstream.ReplicationMessage_Response, error) {
serviceName := strings.TrimPrefix(update.CorrelationID, subExportedService)
csn, ok := update.Result.(*pbservice.IndexedCheckServiceNodes)
if !ok {
return nil, fmt.Errorf("invalid type for service response: %T", update.Result)
}
export := &pbpeerstream.ExportedService{
Nodes: csn.Nodes,
}
any, err := anypb.New(export)
if err != nil {
return nil, fmt.Errorf("failed to marshal: %w", err)
}
return &pbpeerstream.ReplicationMessage_Response{
ResourceURL: pbpeerstream.TypeURLExportedService,
ResourceID: serviceName,
Operation: pbpeerstream.Operation_OPERATION_UPSERT,
Resource: any,
}, nil
}
func makeCARootsResponse(
update cache.UpdateEvent,
) (*pbpeerstream.ReplicationMessage_Response, error) {
any, _, err := marshalToProtoAny[*pbpeering.PeeringTrustBundle](update.Result)
if err != nil {
return nil, fmt.Errorf("failed to marshal: %w", err)
}
return &pbpeerstream.ReplicationMessage_Response{
ResourceURL: pbpeerstream.TypeURLPeeringTrustBundle,
ResourceID: "roots",
Operation: pbpeerstream.Operation_OPERATION_UPSERT,
Resource: any,
}, nil
}
func makeServerAddrsResponse(
update cache.UpdateEvent,
) (*pbpeerstream.ReplicationMessage_Response, error) {
any, _, err := marshalToProtoAny[*pbpeering.PeeringServerAddresses](update.Result)
if err != nil {
return nil, fmt.Errorf("failed to marshal: %w", err)
}
return &pbpeerstream.ReplicationMessage_Response{
ResourceURL: pbpeerstream.TypeURLPeeringServerAddresses,
ResourceID: "server-addrs",
Operation: pbpeerstream.Operation_OPERATION_UPSERT,
Resource: any,
}, nil
}
// marshalToProtoAny takes any input and returns:
// the protobuf.Any type, the asserted T type, and any errors
// during marshalling or type assertion.
// `in` MUST be of type T or it returns an error.
func marshalToProtoAny[T newproto.Message](in any) (*anypb.Any, T, error) {
typ, ok := in.(T)
if !ok {
var outType T
return nil, typ, fmt.Errorf("input type is not %T: %T", outType, in)
}
any, err := anypb.New(typ)
if err != nil {
return nil, typ, err
}
return any, typ, nil
}
func (s *Server) processResponse(
peerName string,
partition string,
mutableStatus *MutableStatus,
resp *pbpeerstream.ReplicationMessage_Response,
) (*pbpeerstream.ReplicationMessage, error) {
if !pbpeerstream.KnownTypeURL(resp.ResourceURL) {
err := fmt.Errorf("received response for unknown resource type %q", resp.ResourceURL)
return makeNACKReply(
resp.ResourceURL,
resp.Nonce,
code.Code_INVALID_ARGUMENT,
err.Error(),
), err
}
if resp.Nonce == "" {
err := fmt.Errorf("received response without a nonce for: %s:%s", resp.ResourceURL, resp.ResourceID)
return makeNACKReply(
resp.ResourceURL,
resp.Nonce,
code.Code_INVALID_ARGUMENT,
err.Error(),
), err
}
switch resp.Operation {
case pbpeerstream.Operation_OPERATION_UPSERT:
if resp.Resource == nil {
err := fmt.Errorf("received upsert response with no content")
return makeNACKReply(
resp.ResourceURL,
resp.Nonce,
code.Code_INVALID_ARGUMENT,
err.Error(),
), err
}
if err := s.handleUpsert(peerName, partition, mutableStatus, resp.ResourceURL, resp.ResourceID, resp.Resource); err != nil {
return makeNACKReply(
resp.ResourceURL,
resp.Nonce,
code.Code_INTERNAL,
fmt.Sprintf("upsert error, ResourceURL: %q, ResourceID: %q: %v", resp.ResourceURL, resp.ResourceID, err),
), fmt.Errorf("upsert error: %w", err)
}
return makeACKReply(resp.ResourceURL, resp.Nonce), nil
default:
var errMsg string
if op := pbpeerstream.Operation_name[int32(resp.Operation)]; op != "" {
errMsg = fmt.Sprintf("unsupported operation: %q", op)
} else {
errMsg = fmt.Sprintf("unsupported operation: %d", resp.Operation)
}
return makeNACKReply(
resp.ResourceURL,
resp.Nonce,
code.Code_INVALID_ARGUMENT,
errMsg,
), errors.New(errMsg)
}
}
func (s *Server) handleUpsert(
peerName string,
partition string,
mutableStatus *MutableStatus,
resourceURL string,
resourceID string,
resource *anypb.Any,
) error {
if resource.TypeUrl != resourceURL {
return fmt.Errorf("mismatched resourceURL %q and Any typeUrl %q", resourceURL, resource.TypeUrl)
}
switch resourceURL {
case pbpeerstream.TypeURLExportedServiceList:
export := &pbpeerstream.ExportedServiceList{}
if err := resource.UnmarshalTo(export); err != nil {
return fmt.Errorf("failed to unmarshal resource: %w", err)
}
err := s.handleUpsertExportedServiceList(mutableStatus, peerName, partition, export)
if err != nil {
return fmt.Errorf("did not update imported services based on the exported service list event: %w", err)
}
return nil
case pbpeerstream.TypeURLExportedService:
sn := structs.ServiceNameFromString(resourceID)
sn.OverridePartition(partition)
export := &pbpeerstream.ExportedService{}
if err := resource.UnmarshalTo(export); err != nil {
return fmt.Errorf("failed to unmarshal resource: %w", err)
}
err := s.handleUpdateService(peerName, partition, sn, export)
if err != nil {
return fmt.Errorf("did not increment imported services count for service=%q: %w", sn.String(), err)
}
return nil
case pbpeerstream.TypeURLPeeringTrustBundle:
roots := &pbpeering.PeeringTrustBundle{}
if err := resource.UnmarshalTo(roots); err != nil {
return fmt.Errorf("failed to unmarshal resource: %w", err)
}
return s.handleUpsertRoots(peerName, partition, roots)
case pbpeerstream.TypeURLPeeringServerAddresses:
addrs := &pbpeering.PeeringServerAddresses{}
if err := resource.UnmarshalTo(addrs); err != nil {
return fmt.Errorf("failed to unmarshal resource: %w", err)
}
return s.handleUpsertServerAddrs(peerName, partition, addrs)
default:
return fmt.Errorf("unexpected resourceURL: %s", resourceURL)
}
}
func (s *Server) handleUpsertExportedServiceList(
mutableStatus *MutableStatus,
peerName string,
partition string,
export *pbpeerstream.ExportedServiceList,
) error {
exportedServices := make(map[structs.ServiceName]struct{})
var serviceNames []structs.ServiceName
for _, service := range export.Services {
sn := structs.ServiceNameFromString(service)
sn.OverridePartition(partition)
// This ensures that we don't delete exported service's sidecars below.
snSidecarProxy := structs.ServiceNameFromString(service + syntheticProxyNameSuffix)
snSidecarProxy.OverridePartition(partition)
exportedServices[sn] = struct{}{}
exportedServices[snSidecarProxy] = struct{}{}
serviceNames = append(serviceNames, sn)
}
// Ensure we query services from all namespaces in this partition when we perform
// this query or else we may not propagate updates / deletes correctly.
entMeta := acl.NewEnterpriseMetaWithPartition(partition, acl.WildcardName)
_, serviceList, err := s.GetStore().ServiceList(nil, &entMeta, peerName)
if err != nil {
return err
}
for _, sn := range serviceList {
if _, ok := exportedServices[sn]; !ok {
err := s.handleUpdateService(peerName, partition, sn, nil)
if err != nil {
return fmt.Errorf("failed to delete unexported service: %w", err)
}
}
}
mutableStatus.SetImportedServices(serviceNames)
return nil
}
// handleUpdateService handles both deletion and upsert events for a service.
//
// On an UPSERT event:
// - All nodes, services, checks in the input pbNodes are re-applied through Raft.
// - Any nodes, services, or checks in the catalog that were not in the input pbNodes get deleted.
//
// On a DELETE event:
// - A reconciliation against nil or empty input pbNodes leads to deleting all stored catalog resources
// associated with the service name.
func (s *Server) handleUpdateService(
peerName string,
partition string,
sn structs.ServiceName,
export *pbpeerstream.ExportedService,
) error {
// Capture instances in the state store for reconciliation later.
_, storedInstances, err := s.GetStore().CheckServiceNodes(nil, sn.Name, &sn.EnterpriseMeta, peerName)
if err != nil {
return fmt.Errorf("failed to read imported services: %w", err)
}
structsNodes := []structs.CheckServiceNode{}
if export != nil {
structsNodes, err = export.CheckServiceNodesToStruct()
if err != nil {
return fmt.Errorf("failed to convert protobuf instances to structs: %w", err)
}
}
// Normalize the data into a convenient form for operation.
snap := newHealthSnapshot(structsNodes, partition, peerName)
storedNodesMap, storedSvcInstMap, storedChecksMap := buildStoredMap(storedInstances)
for _, nodeSnap := range snap.Nodes {
// First register the node - skip the unchanged ones
changed := true
if storedNode, ok := storedNodesMap[nodeSnap.Node.Node]; ok {
if storedNode.IsSame(nodeSnap.Node) {
changed = false
}
}
req := nodeSnap.Node.ToRegisterRequest()
if changed {
if err := s.Backend.CatalogRegister(&req); err != nil {
return fmt.Errorf("failed to register node: %w", err)
}
}
// Then register all services on that node - skip the unchanged ones
for _, svcSnap := range nodeSnap.Services {
changed = true
if storedSvcInst, ok := storedSvcInstMap[makeNodeSvcInstID(nodeSnap.Node.Node, svcSnap.Service.ID)]; ok {
if storedSvcInst.IsSame(svcSnap.Service) {
changed = false
}
}
if changed {
req.Service = svcSnap.Service
if err := s.Backend.CatalogRegister(&req); err != nil {
return fmt.Errorf("failed to register service: %w", err)
}
}
}
req.Service = nil
// Then register all checks on that node - skip the unchanged ones
var chks structs.HealthChecks
for _, svcSnap := range nodeSnap.Services {
for _, c := range svcSnap.Checks {
changed := true
if chk, ok := storedChecksMap[makeNodeCheckID(nodeSnap.Node.Node, svcSnap.Service.ID, c.CheckID)]; ok {
if chk.IsSame(c) {
changed = false
}
}
if changed {
chks = append(chks, c)
}
}
}
if len(chks) > 0 {
req.Checks = chks
if err := s.Backend.CatalogRegister(&req); err != nil {
return fmt.Errorf("failed to register check: %w", err)
}
}
}
//
// Now that the data received has been stored in the state store, the rest of this
// function is responsible for cleaning up data in the catalog that wasn't in the snapshot.
//
// nodeCheckTuple uniquely identifies a node check in the catalog.
// The partition is not needed because we are only operating on one partition's catalog.
type nodeCheckTuple struct {
checkID types.CheckID
node string
}
var (
// unusedNodes tracks node names that were not present in the latest response.
// Missing nodes are not assumed to be deleted because there may be other service names
// registered on them.
// Inside we also track a map of node checks associated with the node.
unusedNodes = make(map[string]struct{})
// deletedNodeChecks tracks node checks that were not present in the latest response.
// A single node check will be attached to all service instances of a node, so this
// deduplication prevents issuing multiple deregistrations for a single check.
deletedNodeChecks = make(map[nodeCheckTuple]struct{})
)
for _, csn := range storedInstances {
if _, ok := snap.Nodes[csn.Node.Node]; !ok {
unusedNodes[csn.Node.Node] = struct{}{}
// Since the node is not in the snapshot we can know the associated service
// instance is not in the snapshot either, since a service instance can't
// exist without a node.
// This will also delete all service checks.
err := s.Backend.CatalogDeregister(&structs.DeregisterRequest{
Node: csn.Node.Node,
ServiceID: csn.Service.ID,
EnterpriseMeta: csn.Service.EnterpriseMeta,
PeerName: peerName,
})
if err != nil {
return fmt.Errorf("failed to deregister service %q: %w", csn.Service.CompoundServiceID(), err)
}
// We can't know if a node check was deleted from the exporting cluster
// (but not the node itself) if the node wasn't in the snapshot,
// so we do not loop over checks here.
// If the unusedNode gets deleted below that will also delete node checks.
continue
}
// Delete the service instance if not in the snapshot.
sid := csn.Service.CompoundServiceID()
if _, ok := snap.Nodes[csn.Node.Node].Services[sid]; !ok {
err := s.Backend.CatalogDeregister(&structs.DeregisterRequest{
Node: csn.Node.Node,
ServiceID: csn.Service.ID,
EnterpriseMeta: csn.Service.EnterpriseMeta,
PeerName: peerName,
})
if err != nil {
ident := fmt.Sprintf("partition:%s/peer:%s/node:%s/ns:%s/service_id:%s",
csn.Service.PartitionOrDefault(), peerName, csn.Node.Node, csn.Service.NamespaceOrDefault(), csn.Service.ID)
return fmt.Errorf("failed to deregister service %q: %w", ident, err)
}
// When a service is deleted all associated checks also get deleted as a side effect.
continue
}
// Reconcile checks.
for _, chk := range csn.Checks {
if _, ok := snap.Nodes[csn.Node.Node].Services[sid].Checks[chk.CheckID]; !ok {
// Checks without a ServiceID are node checks.
// If the node exists but the check does not then the check was deleted.
if chk.ServiceID == "" {
// Deduplicate node checks to avoid deregistering a check multiple times.
tuple := nodeCheckTuple{
checkID: chk.CheckID,
node: chk.Node,
}
deletedNodeChecks[tuple] = struct{}{}
continue
}
// If the check isn't a node check then it's a service check.
// Service checks that were not present can be deleted immediately because
// checks for a given service ID will only be attached to a single CheckServiceNode.
err := s.Backend.CatalogDeregister(&structs.DeregisterRequest{
Node: chk.Node,
CheckID: chk.CheckID,
EnterpriseMeta: chk.EnterpriseMeta,
PeerName: peerName,
})
if err != nil {
ident := fmt.Sprintf("partition:%s/peer:%s/node:%s/ns:%s/check_id:%s",
chk.PartitionOrDefault(), peerName, chk.Node, chk.NamespaceOrDefault(), chk.CheckID)
return fmt.Errorf("failed to deregister check %q: %w", ident, err)
}
}
}
}
// Delete all deduplicated node checks.
for chk := range deletedNodeChecks {
nodeMeta := structs.NodeEnterpriseMetaInPartition(sn.PartitionOrDefault())
err := s.Backend.CatalogDeregister(&structs.DeregisterRequest{
Node: chk.node,
CheckID: chk.checkID,
EnterpriseMeta: *nodeMeta,
PeerName: peerName,
})
if err != nil {
ident := fmt.Sprintf("partition:%s/peer:%s/node:%s/check_id:%s", nodeMeta.PartitionOrDefault(), peerName, chk.node, chk.checkID)
return fmt.Errorf("failed to deregister node check %q: %w", ident, err)
}
}
// Delete any nodes that do not have any other services registered on them.
for node := range unusedNodes {
// The wildcard is used here so that all services, regardless of namespace are returned
// by the following query. Without this, the node might accidentally be cleaned up early.
wildcardNSMeta := acl.NewEnterpriseMetaWithPartition(sn.PartitionOrDefault(), acl.WildcardName)
_, ns, err := s.GetStore().NodeServiceList(nil, node, &wildcardNSMeta, peerName)
if err != nil {
return fmt.Errorf("failed to query services on node: %w", err)
}
if ns != nil && len(ns.Services) >= 1 {
// At least one service is still registered on this node, so we keep it.
continue
}
// All services on the node were deleted, so the node is also cleaned up.
err = s.Backend.CatalogDeregister(&structs.DeregisterRequest{
Node: node,
PeerName: peerName,
EnterpriseMeta: *structs.NodeEnterpriseMetaInPartition(sn.PartitionOrDefault()),
})
if err != nil {
ident := fmt.Sprintf("partition:%s/peer:%s/node:%s", sn.PartitionOrDefault(), peerName, node)
return fmt.Errorf("failed to deregister node %q: %w", ident, err)
}
}
return nil
}
func (s *Server) handleUpsertRoots(
peerName string,
partition string,
trustBundle *pbpeering.PeeringTrustBundle,
) error {
// We override the partition and peer name so that the trust bundle gets stored
// in the importing partition with a reference to the peer it was imported from.
trustBundle.Partition = partition
trustBundle.PeerName = peerName
req := &pbpeering.PeeringTrustBundleWriteRequest{
PeeringTrustBundle: trustBundle,
}
return s.Backend.PeeringTrustBundleWrite(req)
}
func (s *Server) handleUpsertServerAddrs(
peerName string,
partition string,
addrs *pbpeering.PeeringServerAddresses,
) error {
q := state.Query{
Value: peerName,
EnterpriseMeta: *structs.DefaultEnterpriseMetaInPartition(partition),
}
_, existing, err := s.GetStore().PeeringRead(nil, q)
if err != nil {
return fmt.Errorf("failed to read peering: %w", err)
}
if existing == nil || !existing.IsActive() {
return fmt.Errorf("peering does not exist or has been marked for deletion")
}
// Clone to avoid mutating the existing data
p := proto.Clone(existing).(*pbpeering.Peering)
p.PeerServerAddresses = addrs.GetAddresses()
req := &pbpeering.PeeringWriteRequest{
Peering: p,
}
return s.Backend.PeeringWrite(req)
}
func makeACKReply(resourceURL, nonce string) *pbpeerstream.ReplicationMessage {
return makeReplicationRequest(&pbpeerstream.ReplicationMessage_Request{
ResourceURL: resourceURL,
ResponseNonce: nonce,
})
}
func makeNACKReply(resourceURL, nonce string, errCode code.Code, errMsg string) *pbpeerstream.ReplicationMessage {
var rpcErr *pbstatus.Status
if errCode != code.Code_OK || errMsg != "" {
rpcErr = &pbstatus.Status{
Code: int32(errCode),
Message: errMsg,
}
}
return makeReplicationRequest(&pbpeerstream.ReplicationMessage_Request{
ResourceURL: resourceURL,
ResponseNonce: nonce,
Error: rpcErr,
})
}
// makeReplicationRequest is a convenience method to make a Request-type ReplicationMessage.
func makeReplicationRequest(req *pbpeerstream.ReplicationMessage_Request) *pbpeerstream.ReplicationMessage {
return &pbpeerstream.ReplicationMessage{
Payload: &pbpeerstream.ReplicationMessage_Request_{
Request: req,
},
}
}
// makeReplicationResponse is a convenience method to make a Response-type ReplicationMessage.
func makeReplicationResponse(resp *pbpeerstream.ReplicationMessage_Response) *pbpeerstream.ReplicationMessage {
return &pbpeerstream.ReplicationMessage{
Payload: &pbpeerstream.ReplicationMessage_Response_{
Response: resp,
},
}
}
// nodeSvcInstIdentity uniquely identifies an service instance imported from a peering cluster
type nodeSvcInstIdentity struct {
nodeID string
serviceID string
}
// nodeCheckIdentity uniquely identifies a check imported from a peering cluster
type nodeCheckIdentity struct {
nodeID string
serviceID string
checkID string
}
func makeNodeSvcInstID(node string, serviceID string) nodeSvcInstIdentity {
return nodeSvcInstIdentity{
nodeID: node,
serviceID: serviceID,
}
}
func makeNodeCheckID(node string, serviceID string, checkID types.CheckID) nodeCheckIdentity {
return nodeCheckIdentity{
serviceID: serviceID,
checkID: string(checkID),
nodeID: node,
}
}
func buildStoredMap(storedInstances structs.CheckServiceNodes) (
map[string]*structs.Node,
map[nodeSvcInstIdentity]*structs.NodeService,
map[nodeCheckIdentity]*structs.HealthCheck,
) {
nodesMap := map[string]*structs.Node{}
svcInstMap := map[nodeSvcInstIdentity]*structs.NodeService{}
checksMap := map[nodeCheckIdentity]*structs.HealthCheck{}
for _, csn := range storedInstances {
nodesMap[csn.Node.Node] = csn.Node
svcInstMap[makeNodeSvcInstID(csn.Node.Node, csn.Service.ID)] = csn.Service
for _, chk := range csn.Checks {
checksMap[makeNodeCheckID(csn.Node.Node, csn.Service.ID, chk.CheckID)] = chk
}
}
return nodesMap, svcInstMap, checksMap
}