consul/agent/checks/check.go
2021-04-10 00:53:53 -04:00

946 lines
23 KiB
Go

package checks
import (
"context"
"crypto/tls"
"fmt"
http2 "golang.org/x/net/http2"
"io"
"io/ioutil"
"net"
"net/http"
"os"
osexec "os/exec"
"strings"
"sync"
"syscall"
"time"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/go-hclog"
"github.com/armon/circbuf"
"github.com/hashicorp/consul/agent/exec"
"github.com/hashicorp/consul/api"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/go-cleanhttp"
)
const (
// MinInterval is the minimal interval between
// two checks. Do not allow for a interval below this value.
// Otherwise we risk fork bombing a system.
MinInterval = time.Second
// DefaultBufSize is the maximum size of the captured
// check output by default. Prevents an enormous buffer
// from being captured
DefaultBufSize = 4 * 1024 // 4KB
// UserAgent is the value of the User-Agent header
// for HTTP health checks.
UserAgent = "Consul Health Check"
)
// RPC is an interface that an RPC client must implement. This is a helper
// interface that is implemented by the agent delegate for checks that need
// to make RPC calls.
type RPC interface {
RPC(method string, args interface{}, reply interface{}) error
}
// CheckNotifier interface is used by the CheckMonitor
// to notify when a check has a status update. The update
// should take care to be idempotent.
type CheckNotifier interface {
UpdateCheck(checkID structs.CheckID, status, output string)
// ServiceExists return true if the given service does exists
ServiceExists(serviceID structs.ServiceID) bool
}
// CheckMonitor is used to periodically invoke a script to
// determine the health of a given check. It is compatible with
// nagios plugins and expects the output in the same format.
// Supports failures_before_critical and success_before_passing.
type CheckMonitor struct {
Notify CheckNotifier
CheckID structs.CheckID
ServiceID structs.ServiceID
Script string
ScriptArgs []string
Interval time.Duration
Timeout time.Duration
Logger hclog.Logger
OutputMaxSize int
StatusHandler *StatusHandler
stop bool
stopCh chan struct{}
stopLock sync.Mutex
}
// Start is used to start a check monitor.
// Monitor runs until stop is called
func (c *CheckMonitor) Start() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
c.stop = false
c.stopCh = make(chan struct{})
go c.run()
}
// Stop is used to stop a check monitor.
func (c *CheckMonitor) Stop() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
if !c.stop {
c.stop = true
close(c.stopCh)
}
}
// run is invoked by a goroutine to run until Stop() is called
func (c *CheckMonitor) run() {
// Get the randomized initial pause time
initialPauseTime := lib.RandomStagger(c.Interval)
next := time.After(initialPauseTime)
for {
select {
case <-next:
c.check()
next = time.After(c.Interval)
case <-c.stopCh:
return
}
}
}
// check is invoked periodically to perform the script check
func (c *CheckMonitor) check() {
// Create the command
var cmd *osexec.Cmd
var err error
if len(c.ScriptArgs) > 0 {
cmd, err = exec.Subprocess(c.ScriptArgs)
} else {
cmd, err = exec.Script(c.Script)
}
if err != nil {
c.Logger.Error("Check failed to setup",
"check", c.CheckID.String(),
"error", err,
)
c.Notify.UpdateCheck(c.CheckID, api.HealthCritical, err.Error())
return
}
// Collect the output
output, _ := circbuf.NewBuffer(int64(c.OutputMaxSize))
cmd.Stdout = output
cmd.Stderr = output
exec.SetSysProcAttr(cmd)
truncateAndLogOutput := func() string {
outputStr := string(output.Bytes())
if output.TotalWritten() > output.Size() {
outputStr = fmt.Sprintf("Captured %d of %d bytes\n...\n%s",
output.Size(), output.TotalWritten(), outputStr)
}
c.Logger.Trace("Check output",
"check", c.CheckID.String(),
"output", outputStr,
)
return outputStr
}
// Start the check
if err := cmd.Start(); err != nil {
c.Logger.Error("Check failed to invoke",
"check", c.CheckID.String(),
"error", err,
)
c.Notify.UpdateCheck(c.CheckID, api.HealthCritical, err.Error())
return
}
// Wait for the check to complete
waitCh := make(chan error, 1)
go func() {
waitCh <- cmd.Wait()
}()
timeout := 30 * time.Second
if c.Timeout > 0 {
timeout = c.Timeout
}
select {
case <-time.After(timeout):
if err := exec.KillCommandSubtree(cmd); err != nil {
c.Logger.Warn("Check failed to kill after timeout",
"check", c.CheckID.String(),
"error", err,
)
}
msg := fmt.Sprintf("Timed out (%s) running check", timeout.String())
c.Logger.Warn("Timed out running check",
"check", c.CheckID.String(),
"timeout", timeout.String(),
)
outputStr := truncateAndLogOutput()
if len(outputStr) > 0 {
msg += "\n\n" + outputStr
}
c.Notify.UpdateCheck(c.CheckID, api.HealthCritical, msg)
// Now wait for the process to exit so we never start another
// instance concurrently.
<-waitCh
return
case err = <-waitCh:
// The process returned before the timeout, proceed normally
}
// Check if the check passed
outputStr := truncateAndLogOutput()
if err == nil {
c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, outputStr)
return
}
// If the exit code is 1, set check as warning
exitErr, ok := err.(*osexec.ExitError)
if ok {
if status, ok := exitErr.Sys().(syscall.WaitStatus); ok {
code := status.ExitStatus()
if code == 1 {
c.StatusHandler.updateCheck(c.CheckID, api.HealthWarning, outputStr)
return
}
}
}
// Set the health as critical
c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, outputStr)
}
// CheckTTL is used to apply a TTL to check status,
// and enables clients to set the status of a check
// but upon the TTL expiring, the check status is
// automatically set to critical.
type CheckTTL struct {
Notify CheckNotifier
CheckID structs.CheckID
ServiceID structs.ServiceID
TTL time.Duration
Logger hclog.Logger
timer *time.Timer
lastOutput string
lastOutputLock sync.RWMutex
stop bool
stopCh chan struct{}
stopLock sync.Mutex
OutputMaxSize int
}
// Start is used to start a check ttl, runs until Stop()
func (c *CheckTTL) Start() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
if c.OutputMaxSize < 1 {
c.OutputMaxSize = DefaultBufSize
}
c.stop = false
c.stopCh = make(chan struct{})
c.timer = time.NewTimer(c.TTL)
go c.run()
}
// Stop is used to stop a check ttl.
func (c *CheckTTL) Stop() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
if !c.stop {
c.timer.Stop()
c.stop = true
close(c.stopCh)
}
}
// run is used to handle TTL expiration and to update the check status
func (c *CheckTTL) run() {
for {
select {
case <-c.timer.C:
c.Logger.Warn("Check missed TTL, is now critical",
"check", c.CheckID.String(),
)
c.Notify.UpdateCheck(c.CheckID, api.HealthCritical, c.getExpiredOutput())
case <-c.stopCh:
return
}
}
}
// getExpiredOutput formats the output for the case when the TTL is expired.
func (c *CheckTTL) getExpiredOutput() string {
c.lastOutputLock.RLock()
defer c.lastOutputLock.RUnlock()
const prefix = "TTL expired"
if c.lastOutput == "" {
return prefix
}
return fmt.Sprintf("%s (last output before timeout follows): %s", prefix, c.lastOutput)
}
// SetStatus is used to update the status of the check,
// and to renew the TTL. If expired, TTL is restarted.
// output is returned (might be truncated)
func (c *CheckTTL) SetStatus(status, output string) string {
c.Logger.Debug("Check status updated",
"check", c.CheckID.String(),
"status", status,
)
total := len(output)
if total > c.OutputMaxSize {
output = fmt.Sprintf("%s ... (captured %d of %d bytes)",
output[:c.OutputMaxSize], c.OutputMaxSize, total)
}
c.Notify.UpdateCheck(c.CheckID, status, output)
// Store the last output so we can retain it if the TTL expires.
c.lastOutputLock.Lock()
c.lastOutput = output
c.lastOutputLock.Unlock()
c.timer.Reset(c.TTL)
return output
}
// CheckHTTP is used to periodically make an HTTP request to
// determine the health of a given check.
// The check is passing if the response code is 2XX.
// The check is warning if the response code is 429.
// The check is critical if the response code is anything else
// or if the request returns an error
// Supports failures_before_critical and success_before_passing.
type CheckHTTP struct {
CheckID structs.CheckID
ServiceID structs.ServiceID
HTTP string
Header map[string][]string
Method string
Body string
Interval time.Duration
Timeout time.Duration
Logger hclog.Logger
TLSClientConfig *tls.Config
OutputMaxSize int
StatusHandler *StatusHandler
httpClient *http.Client
stop bool
stopCh chan struct{}
stopLock sync.Mutex
stopWg sync.WaitGroup
// Set if checks are exposed through Connect proxies
// If set, this is the target of check()
ProxyHTTP string
}
func (c *CheckHTTP) CheckType() structs.CheckType {
return structs.CheckType{
CheckID: c.CheckID.ID,
HTTP: c.HTTP,
Method: c.Method,
Body: c.Body,
Header: c.Header,
Interval: c.Interval,
ProxyHTTP: c.ProxyHTTP,
Timeout: c.Timeout,
OutputMaxSize: c.OutputMaxSize,
}
}
// Start is used to start an HTTP check.
// The check runs until stop is called
func (c *CheckHTTP) Start() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
if c.httpClient == nil {
// Create the transport. We disable HTTP Keep-Alive's to prevent
// failing checks due to the keepalive interval.
trans := cleanhttp.DefaultTransport()
trans.DisableKeepAlives = true
// Take on the supplied TLS client config.
trans.TLSClientConfig = c.TLSClientConfig
// Create the HTTP client.
c.httpClient = &http.Client{
Timeout: 10 * time.Second,
Transport: trans,
}
if c.Timeout > 0 {
c.httpClient.Timeout = c.Timeout
}
if c.OutputMaxSize < 1 {
c.OutputMaxSize = DefaultBufSize
}
}
c.stop = false
c.stopCh = make(chan struct{})
c.stopWg.Add(1)
go c.run()
}
// Stop is used to stop an HTTP check.
func (c *CheckHTTP) Stop() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
if !c.stop {
c.stop = true
close(c.stopCh)
}
// Wait for the c.run() goroutine to complete before returning.
c.stopWg.Wait()
}
// run is invoked by a goroutine to run until Stop() is called
func (c *CheckHTTP) run() {
defer c.stopWg.Done()
// Get the randomized initial pause time
initialPauseTime := lib.RandomStagger(c.Interval)
next := time.After(initialPauseTime)
for {
select {
case <-next:
c.check()
next = time.After(c.Interval)
case <-c.stopCh:
return
}
}
}
// check is invoked periodically to perform the HTTP check
func (c *CheckHTTP) check() {
method := c.Method
if method == "" {
method = "GET"
}
target := c.HTTP
if c.ProxyHTTP != "" {
target = c.ProxyHTTP
}
bodyReader := strings.NewReader(c.Body)
req, err := http.NewRequest(method, target, bodyReader)
if err != nil {
c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error())
return
}
req.Header = http.Header(c.Header)
// this happens during testing but not in prod
if req.Header == nil {
req.Header = make(http.Header)
}
if host := req.Header.Get("Host"); host != "" {
req.Host = host
}
if req.Header.Get("User-Agent") == "" {
req.Header.Set("User-Agent", UserAgent)
}
if req.Header.Get("Accept") == "" {
req.Header.Set("Accept", "text/plain, text/*, */*")
}
resp, err := c.httpClient.Do(req)
if err != nil {
c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error())
return
}
defer resp.Body.Close()
// Read the response into a circular buffer to limit the size
output, _ := circbuf.NewBuffer(int64(c.OutputMaxSize))
if _, err := io.Copy(output, resp.Body); err != nil {
c.Logger.Warn("Check error while reading body",
"check", c.CheckID.String(),
"error", err,
)
}
// Format the response body
result := fmt.Sprintf("HTTP %s %s: %s Output: %s", method, target, resp.Status, output.String())
if resp.StatusCode >= 200 && resp.StatusCode <= 299 {
// PASSING (2xx)
c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, result)
} else if resp.StatusCode == 429 {
// WARNING
// 429 Too Many Requests (RFC 6585)
// The user has sent too many requests in a given amount of time.
c.StatusHandler.updateCheck(c.CheckID, api.HealthWarning, result)
} else {
// CRITICAL
c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, result)
}
}
type CheckH2PING struct {
CheckID structs.CheckID
ServiceID structs.ServiceID
H2PING string
Interval time.Duration
Timeout time.Duration
Logger hclog.Logger
TLSClientConfig *tls.Config
StatusHandler *StatusHandler
stop bool
stopCh chan struct{}
stopLock sync.Mutex
}
func (c *CheckH2PING) check() {
t := &http2.Transport{
TLSClientConfig: c.TLSClientConfig,
}
target := c.H2PING
conn, err := tls.Dial("tcp", target, c.TLSClientConfig)
if err != nil {
message := fmt.Sprintf("Failed to dial to %s: %s", target, err)
c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, message)
return
}
defer conn.Close()
clientConn, err := t.NewClientConn(conn)
if err != nil {
message := fmt.Sprintf("Failed to create client connection %s", err)
c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, message)
return
}
ctx, cancel := context.WithTimeout(context.Background(), c.Timeout)
defer cancel()
defer clientConn.Shutdown(ctx)
err = clientConn.Ping(ctx)
if err == nil {
c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, "HTTP2 ping was successful")
} else {
message := fmt.Sprintf("HTTP2 ping failed: %s", err)
c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, message)
}
}
// Stop is used to stop an H2PING check.
func (c *CheckH2PING) Stop() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
if !c.stop {
c.stop = true
close(c.stopCh)
}
}
func (c *CheckH2PING) run() {
// Get the randomized initial pause time
initialPauseTime := lib.RandomStagger(c.Interval)
next := time.After(initialPauseTime)
for {
select {
case <-next:
c.check()
next = time.After(c.Interval)
case <-c.stopCh:
return
}
}
}
func (c *CheckH2PING) Start() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
if c.Timeout <= 0 {
c.Timeout = 10 * time.Second
}
c.stop = false
c.stopCh = make(chan struct{})
go c.run()
}
// CheckTCP is used to periodically make an TCP/UDP connection to
// determine the health of a given check.
// The check is passing if the connection succeeds
// The check is critical if the connection returns an error
// Supports failures_before_critical and success_before_passing.
type CheckTCP struct {
CheckID structs.CheckID
ServiceID structs.ServiceID
TCP string
Interval time.Duration
Timeout time.Duration
Logger hclog.Logger
StatusHandler *StatusHandler
dialer *net.Dialer
stop bool
stopCh chan struct{}
stopLock sync.Mutex
}
// Start is used to start a TCP check.
// The check runs until stop is called
func (c *CheckTCP) Start() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
if c.dialer == nil {
// Create the socket dialer
c.dialer = &net.Dialer{
Timeout: 10 * time.Second,
DualStack: true,
}
if c.Timeout > 0 {
c.dialer.Timeout = c.Timeout
}
}
c.stop = false
c.stopCh = make(chan struct{})
go c.run()
}
// Stop is used to stop a TCP check.
func (c *CheckTCP) Stop() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
if !c.stop {
c.stop = true
close(c.stopCh)
}
}
// run is invoked by a goroutine to run until Stop() is called
func (c *CheckTCP) run() {
// Get the randomized initial pause time
initialPauseTime := lib.RandomStagger(c.Interval)
next := time.After(initialPauseTime)
for {
select {
case <-next:
c.check()
next = time.After(c.Interval)
case <-c.stopCh:
return
}
}
}
// check is invoked periodically to perform the TCP check
func (c *CheckTCP) check() {
conn, err := c.dialer.Dial(`tcp`, c.TCP)
if err != nil {
c.Logger.Warn("Check socket connection failed",
"check", c.CheckID.String(),
"error", err,
)
c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error())
return
}
conn.Close()
c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, fmt.Sprintf("TCP connect %s: Success", c.TCP))
}
// CheckDocker is used to periodically invoke a script to
// determine the health of an application running inside a
// Docker Container. We assume that the script is compatible
// with nagios plugins and expects the output in the same format.
// Supports failures_before_critical and success_before_passing.
type CheckDocker struct {
CheckID structs.CheckID
ServiceID structs.ServiceID
Script string
ScriptArgs []string
DockerContainerID string
Shell string
Interval time.Duration
Logger hclog.Logger
Client *DockerClient
StatusHandler *StatusHandler
stop chan struct{}
}
func (c *CheckDocker) Start() {
if c.stop != nil {
panic("Docker check already started")
}
if c.Logger == nil {
c.Logger = hclog.New(&hclog.LoggerOptions{Output: ioutil.Discard})
}
if c.Shell == "" {
c.Shell = os.Getenv("SHELL")
if c.Shell == "" {
c.Shell = "/bin/sh"
}
}
c.stop = make(chan struct{})
go c.run()
}
func (c *CheckDocker) Stop() {
if c.stop == nil {
panic("Stop called before start")
}
close(c.stop)
}
func (c *CheckDocker) run() {
defer c.Client.Close()
firstWait := lib.RandomStagger(c.Interval)
next := time.After(firstWait)
for {
select {
case <-next:
c.check()
next = time.After(c.Interval)
case <-c.stop:
return
}
}
}
func (c *CheckDocker) check() {
var out string
status, b, err := c.doCheck()
if err != nil {
c.Logger.Debug("Check failed",
"check", c.CheckID.String(),
"error", err,
)
out = err.Error()
} else {
// out is already limited to CheckBufSize since we're getting a
// limited buffer. So we don't need to truncate it just report
// that it was truncated.
out = string(b.Bytes())
if int(b.TotalWritten()) > len(out) {
out = fmt.Sprintf("Captured %d of %d bytes\n...\n%s", len(out), b.TotalWritten(), out)
}
c.Logger.Trace("Check output",
"check", c.CheckID.String(),
"output", out,
)
}
c.StatusHandler.updateCheck(c.CheckID, status, out)
}
func (c *CheckDocker) doCheck() (string, *circbuf.Buffer, error) {
var cmd []string
if len(c.ScriptArgs) > 0 {
cmd = c.ScriptArgs
} else {
cmd = []string{c.Shell, "-c", c.Script}
}
execID, err := c.Client.CreateExec(c.DockerContainerID, cmd)
if err != nil {
return api.HealthCritical, nil, err
}
buf, err := c.Client.StartExec(c.DockerContainerID, execID)
if err != nil {
return api.HealthCritical, nil, err
}
exitCode, err := c.Client.InspectExec(c.DockerContainerID, execID)
if err != nil {
return api.HealthCritical, nil, err
}
switch exitCode {
case 0:
return api.HealthPassing, buf, nil
case 1:
c.Logger.Debug("Check failed",
"check", c.CheckID.String(),
"exit_code", exitCode,
)
return api.HealthWarning, buf, nil
default:
c.Logger.Debug("Check failed",
"check", c.CheckID.String(),
"exit_code", exitCode,
)
return api.HealthCritical, buf, nil
}
}
// CheckGRPC is used to periodically send request to a gRPC server
// application that implements gRPC health-checking protocol.
// The check is passing if returned status is SERVING.
// The check is critical if connection fails or returned status is
// not SERVING.
// Supports failures_before_critical and success_before_passing.
type CheckGRPC struct {
CheckID structs.CheckID
ServiceID structs.ServiceID
GRPC string
Interval time.Duration
Timeout time.Duration
TLSClientConfig *tls.Config
Logger hclog.Logger
StatusHandler *StatusHandler
probe *GrpcHealthProbe
stop bool
stopCh chan struct{}
stopLock sync.Mutex
// Set if checks are exposed through Connect proxies
// If set, this is the target of check()
ProxyGRPC string
}
func (c *CheckGRPC) CheckType() structs.CheckType {
return structs.CheckType{
CheckID: c.CheckID.ID,
GRPC: c.GRPC,
ProxyGRPC: c.ProxyGRPC,
Interval: c.Interval,
Timeout: c.Timeout,
}
}
func (c *CheckGRPC) Start() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
timeout := 10 * time.Second
if c.Timeout > 0 {
timeout = c.Timeout
}
c.probe = NewGrpcHealthProbe(c.GRPC, timeout, c.TLSClientConfig)
c.stop = false
c.stopCh = make(chan struct{})
go c.run()
}
func (c *CheckGRPC) run() {
// Get the randomized initial pause time
initialPauseTime := lib.RandomStagger(c.Interval)
next := time.After(initialPauseTime)
for {
select {
case <-next:
c.check()
next = time.After(c.Interval)
case <-c.stopCh:
return
}
}
}
func (c *CheckGRPC) check() {
target := c.GRPC
if c.ProxyGRPC != "" {
target = c.ProxyGRPC
}
err := c.probe.Check(target)
if err != nil {
c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error())
} else {
c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, fmt.Sprintf("gRPC check %s: success", target))
}
}
func (c *CheckGRPC) Stop() {
c.stopLock.Lock()
defer c.stopLock.Unlock()
if !c.stop {
c.stop = true
close(c.stopCh)
}
}
// StatusHandler keep tracks of successive error/success counts and ensures
// that status can be set to critical/passing only once the successive number of event
// reaches the given threshold.
type StatusHandler struct {
inner CheckNotifier
logger hclog.Logger
successBeforePassing int
successCounter int
failuresBeforeCritical int
failuresCounter int
}
// NewStatusHandler set counters values to threshold in order to immediatly update status after first check.
func NewStatusHandler(inner CheckNotifier, logger hclog.Logger, successBeforePassing, failuresBeforeCritical int) *StatusHandler {
return &StatusHandler{
logger: logger,
inner: inner,
successBeforePassing: successBeforePassing,
successCounter: successBeforePassing,
failuresBeforeCritical: failuresBeforeCritical,
failuresCounter: failuresBeforeCritical,
}
}
func (s *StatusHandler) updateCheck(checkID structs.CheckID, status, output string) {
if status == api.HealthPassing || status == api.HealthWarning {
s.successCounter++
s.failuresCounter = 0
if s.successCounter >= s.successBeforePassing {
s.logger.Debug("Check status updated",
"check", checkID.String(),
"status", status,
)
s.inner.UpdateCheck(checkID, status, output)
return
}
s.logger.Warn("Check passed but has not reached success threshold",
"check", checkID.String(),
"status", status,
"success_count", s.successCounter,
"success_threshold", s.successBeforePassing,
)
} else {
s.failuresCounter++
s.successCounter = 0
if s.failuresCounter >= s.failuresBeforeCritical {
s.logger.Warn("Check is now critical", "check", checkID.String())
s.inner.UpdateCheck(checkID, status, output)
return
}
s.logger.Warn("Check failed but has not reached failure threshold",
"check", checkID.String(),
"status", status,
"failure_count", s.failuresCounter,
"failure_threshold", s.failuresBeforeCritical,
)
}
}