consul/agent/consul/connect_ca_endpoint.go

544 lines
17 KiB
Go

package consul
import (
"context"
"errors"
"fmt"
"reflect"
"strings"
"sync"
"time"
"github.com/hashicorp/consul/lib/semaphore"
"golang.org/x/time/rate"
"github.com/hashicorp/consul/acl"
"github.com/hashicorp/consul/agent/connect"
"github.com/hashicorp/consul/agent/consul/state"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/go-memdb"
)
var (
// Err strings. net/rpc doesn't have a way to transport typed/rich errors so
// we currently rely on sniffing the error string in a few cases where we need
// to change client behavior. These are the canonical error strings to use.
// Note though that client code can't use `err == consul.Err*` directly since
// the error returned by RPC will be a plain error.errorString created by
// net/rpc client so will not be the same _instance_ that this package
// variable points to. Clients need to compare using `err.Error() ==
// consul.ErrRateLimited.Error()` which is very sad. Short of replacing our
// RPC mechanism it's hard to know how to make that much better though.
ErrConnectNotEnabled = errors.New("Connect must be enabled in order to use this endpoint")
ErrRateLimited = errors.New("Rate limit reached, try again later")
)
const (
// csrLimitWait is the maximum time we'll wait for a slot when CSR concurrency
// limiting or rate limiting is occurring. It's intentionally short so small
// batches of requests can be accommodated when server has capacity (assuming
// signing one cert takes much less than this) but failing requests fast when
// a thundering herd comes along.
csrLimitWait = 500 * time.Millisecond
)
// ConnectCA manages the Connect CA.
type ConnectCA struct {
// srv is a pointer back to the server.
srv *Server
// csrRateLimiter limits the rate of signing new certs if configured. Lazily
// initialized from current config to support dynamic changes.
// csrRateLimiterMu must be held while dereferencing the pointer or storing a
// new one, but methods can be called on the limiter object outside of the
// locked section. This is done only in the getCSRRateLimiterWithLimit method.
csrRateLimiter *rate.Limiter
csrRateLimiterMu sync.RWMutex
// csrConcurrencyLimiter is a dynamically resizable semaphore used to limit
// Sign RPC concurrency if configured. The zero value is usable as soon as
// SetSize is called which we do dynamically in the RPC handler to avoid
// having to hook elaborate synchronization mechanisms through the CA config
// endpoint and config reload etc.
csrConcurrencyLimiter semaphore.Dynamic
}
// getCSRRateLimiterWithLimit returns a rate.Limiter with the desired limit set.
// It uses the shared server-wide limiter unless the limit has been changed in
// config or the limiter has not been setup yet in which case it just-in-time
// configures the new limiter. We assume that limit changes are relatively rare
// and that all callers (there is currently only one) use the same config value
// as the limit. There might be some flapping if there are multiple concurrent
// requests in flight at the time the config changes where A sees the new value
// and updates, B sees the old but then gets this lock second and changes back.
// Eventually though and very soon (once all current RPCs are complete) we are
// guaranteed to have the correct limit set by the next RPC that comes in so I
// assume this is fine. If we observe strange behavior because of it, we could
// add hysteresis that prevents changes too soon after a previous change but
// that seems unnecessary for now.
func (s *ConnectCA) getCSRRateLimiterWithLimit(limit rate.Limit) *rate.Limiter {
s.csrRateLimiterMu.RLock()
lim := s.csrRateLimiter
s.csrRateLimiterMu.RUnlock()
// If there is a current limiter with the same limit, return it. This should
// be the common case.
if lim != nil && lim.Limit() == limit {
return lim
}
// Need to change limiter, get write lock
s.csrRateLimiterMu.Lock()
defer s.csrRateLimiterMu.Unlock()
// No limiter yet, or limit changed in CA config, reconfigure a new limiter.
// We use burst of 1 for a hard limit. Note that either bursting or waiting is
// necessary to get expected behavior in fact of random arrival times, but we
// don't need both and we use Wait with a small delay to smooth noise. See
// https://github.com/banks/sim-rate-limit-backoff/blob/master/README.md.
s.csrRateLimiter = rate.NewLimiter(limit, 1)
return s.csrRateLimiter
}
// ConfigurationGet returns the configuration for the CA.
func (s *ConnectCA) ConfigurationGet(
args *structs.DCSpecificRequest,
reply *structs.CAConfiguration) error {
// Exit early if Connect hasn't been enabled.
if !s.srv.config.ConnectEnabled {
return ErrConnectNotEnabled
}
if done, err := s.srv.forward("ConnectCA.ConfigurationGet", args, args, reply); done {
return err
}
// This action requires operator read access.
rule, err := s.srv.ResolveToken(args.Token)
if err != nil {
return err
}
if rule != nil && !rule.OperatorRead() {
return acl.ErrPermissionDenied
}
state := s.srv.fsm.State()
_, config, err := state.CAConfig()
if err != nil {
return err
}
*reply = *config
return nil
}
// ConfigurationSet updates the configuration for the CA.
func (s *ConnectCA) ConfigurationSet(
args *structs.CARequest,
reply *interface{}) error {
// Exit early if Connect hasn't been enabled.
if !s.srv.config.ConnectEnabled {
return ErrConnectNotEnabled
}
if done, err := s.srv.forward("ConnectCA.ConfigurationSet", args, args, reply); done {
return err
}
// This action requires operator write access.
rule, err := s.srv.ResolveToken(args.Token)
if err != nil {
return err
}
if rule != nil && !rule.OperatorWrite() {
return acl.ErrPermissionDenied
}
// Exit early if it's a no-op change
state := s.srv.fsm.State()
confIdx, config, err := state.CAConfig()
if err != nil {
return err
}
// Don't allow users to change the ClusterID.
args.Config.ClusterID = config.ClusterID
if args.Config.Provider == config.Provider && reflect.DeepEqual(args.Config.Config, config.Config) {
return nil
}
// Create a new instance of the provider described by the config
// and get the current active root CA. This acts as a good validation
// of the config and makes sure the provider is functioning correctly
// before we commit any changes to Raft.
newProvider, err := s.srv.createCAProvider(args.Config)
if err != nil {
return fmt.Errorf("could not initialize provider: %v", err)
}
if err := newProvider.Configure(args.Config.ClusterID, true, args.Config.Config); err != nil {
return fmt.Errorf("error configuring provider: %v", err)
}
if err := newProvider.GenerateRoot(); err != nil {
return fmt.Errorf("error generating CA root certificate: %v", err)
}
newRootPEM, err := newProvider.ActiveRoot()
if err != nil {
return err
}
newActiveRoot, err := parseCARoot(newRootPEM, args.Config.Provider, args.Config.ClusterID)
if err != nil {
return err
}
// Compare the new provider's root CA ID to the current one. If they
// match, just update the existing provider with the new config.
// If they don't match, begin the root rotation process.
_, root, err := state.CARootActive(nil)
if err != nil {
return err
}
// If the root didn't change or if this is a secondary DC, just update the
// config and return.
if (s.srv.config.Datacenter != s.srv.config.PrimaryDatacenter) ||
root != nil && root.ID == newActiveRoot.ID {
args.Op = structs.CAOpSetConfig
resp, err := s.srv.raftApply(structs.ConnectCARequestType, args)
if err != nil {
return err
}
if respErr, ok := resp.(error); ok {
return respErr
}
// If the config has been committed, update the local provider instance
s.srv.setCAProvider(newProvider, newActiveRoot)
s.srv.logger.Printf("[INFO] connect: CA provider config updated")
return nil
}
// At this point, we know the config change has trigged a root rotation,
// either by swapping the provider type or changing the provider's config
// to use a different root certificate.
// If it's a config change that would trigger a rotation (different provider/root):
// 1. Get the root from the new provider.
// 2. Call CrossSignCA on the old provider to sign the new root with the old one to
// get a cross-signed certificate.
// 3. Take the active root for the new provider and append the intermediate from step 2
// to its list of intermediates.
newRoot, err := connect.ParseCert(newRootPEM)
if err != nil {
return err
}
// Have the old provider cross-sign the new intermediate
oldProvider, _ := s.srv.getCAProvider()
if oldProvider == nil {
return fmt.Errorf("internal error: CA provider is nil")
}
xcCert, err := oldProvider.CrossSignCA(newRoot)
if err != nil {
return err
}
// Add the cross signed cert to the new root's intermediates.
newActiveRoot.IntermediateCerts = []string{xcCert}
intermediate, err := newProvider.GenerateIntermediate()
if err != nil {
return err
}
if intermediate != newRootPEM {
newActiveRoot.IntermediateCerts = append(newActiveRoot.IntermediateCerts, intermediate)
}
// Update the roots and CA config in the state store at the same time
idx, roots, err := state.CARoots(nil)
if err != nil {
return err
}
var newRoots structs.CARoots
for _, r := range roots {
newRoot := *r
if newRoot.Active {
newRoot.Active = false
newRoot.RotatedOutAt = time.Now()
}
newRoots = append(newRoots, &newRoot)
}
newRoots = append(newRoots, newActiveRoot)
args.Op = structs.CAOpSetRootsAndConfig
args.Index = idx
args.Config.ModifyIndex = confIdx
args.Roots = newRoots
resp, err := s.srv.raftApply(structs.ConnectCARequestType, args)
if err != nil {
return err
}
if respErr, ok := resp.(error); ok {
return respErr
}
if respOk, ok := resp.(bool); ok && !respOk {
return fmt.Errorf("could not atomically update roots and config")
}
// If the config has been committed, update the local provider instance
// and call teardown on the old provider
s.srv.setCAProvider(newProvider, newActiveRoot)
if err := oldProvider.Cleanup(); err != nil {
s.srv.logger.Printf("[WARN] connect: failed to clean up old provider %q", config.Provider)
}
s.srv.logger.Printf("[INFO] connect: CA rotated to new root under provider %q", args.Config.Provider)
return nil
}
// Roots returns the currently trusted root certificates.
func (s *ConnectCA) Roots(
args *structs.DCSpecificRequest,
reply *structs.IndexedCARoots) error {
// Forward if necessary
if done, err := s.srv.forward("ConnectCA.Roots", args, args, reply); done {
return err
}
// Exit early if Connect hasn't been enabled.
if !s.srv.config.ConnectEnabled {
return ErrConnectNotEnabled
}
// Load the ClusterID to generate TrustDomain. We do this outside the loop
// since by definition this value should be immutable once set for lifetime of
// the cluster so we don't need to look it up more than once. We also don't
// have to worry about non-atomicity between the config fetch transaction and
// the CARoots transaction below since this field must remain immutable. Do
// not re-use this state/config for other logic that might care about changes
// of config during the blocking query below.
{
state := s.srv.fsm.State()
_, config, err := state.CAConfig()
if err != nil {
return err
}
// Check CA is actually bootstrapped...
if config != nil {
// Build TrustDomain based on the ClusterID stored.
signingID := connect.SpiffeIDSigningForCluster(config)
if signingID == nil {
// If CA is bootstrapped at all then this should never happen but be
// defensive.
return errors.New("no cluster trust domain setup")
}
reply.TrustDomain = signingID.Host()
}
}
return s.srv.blockingQuery(
&args.QueryOptions, &reply.QueryMeta,
func(ws memdb.WatchSet, state *state.Store) error {
index, roots, err := state.CARoots(ws)
if err != nil {
return err
}
reply.Index, reply.Roots = index, roots
if reply.Roots == nil {
reply.Roots = make(structs.CARoots, 0)
}
// The API response must NEVER contain the secret information
// such as keys and so on. We use a whitelist below to copy the
// specific fields we want to expose.
for i, r := range reply.Roots {
// IMPORTANT: r must NEVER be modified, since it is a pointer
// directly to the structure in the memdb store.
reply.Roots[i] = &structs.CARoot{
ID: r.ID,
Name: r.Name,
SerialNumber: r.SerialNumber,
SigningKeyID: r.SigningKeyID,
ExternalTrustDomain: r.ExternalTrustDomain,
NotBefore: r.NotBefore,
NotAfter: r.NotAfter,
RootCert: r.RootCert,
IntermediateCerts: r.IntermediateCerts,
RaftIndex: r.RaftIndex,
Active: r.Active,
}
if r.Active {
reply.ActiveRootID = r.ID
}
}
return nil
},
)
}
// Sign signs a certificate for a service.
func (s *ConnectCA) Sign(
args *structs.CASignRequest,
reply *structs.IssuedCert) error {
// Exit early if Connect hasn't been enabled.
if !s.srv.config.ConnectEnabled {
return ErrConnectNotEnabled
}
if done, err := s.srv.forward("ConnectCA.Sign", args, args, reply); done {
return err
}
// Parse the CSR
csr, err := connect.ParseCSR(args.CSR)
if err != nil {
return err
}
// Parse the SPIFFE ID
spiffeID, err := connect.ParseCertURI(csr.URIs[0])
if err != nil {
return err
}
serviceID, ok := spiffeID.(*connect.SpiffeIDService)
if !ok {
return fmt.Errorf("SPIFFE ID in CSR must be a service ID")
}
provider, caRoot := s.srv.getCAProvider()
if provider == nil {
return fmt.Errorf("internal error: CA provider is nil")
}
// Verify that the CSR entity is in the cluster's trust domain
state := s.srv.fsm.State()
_, config, err := state.CAConfig()
if err != nil {
return err
}
signingID := connect.SpiffeIDSigningForCluster(config)
if !signingID.CanSign(serviceID) {
return fmt.Errorf("SPIFFE ID in CSR from a different trust domain: %s, "+
"we are %s", serviceID.Host, signingID.Host())
}
// Verify that the ACL token provided has permission to act as this service
rule, err := s.srv.ResolveToken(args.Token)
if err != nil {
return err
}
if rule != nil && !rule.ServiceWrite(serviceID.Service, nil) {
return acl.ErrPermissionDenied
}
// Verify that the DC in the service URI matches us. We might relax this
// requirement later but being restrictive for now is safer.
if serviceID.Datacenter != s.srv.config.Datacenter {
return fmt.Errorf("SPIFFE ID in CSR from a different datacenter: %s, "+
"we are %s", serviceID.Datacenter, s.srv.config.Datacenter)
}
commonCfg, err := config.GetCommonConfig()
if err != nil {
return err
}
if commonCfg.CSRMaxPerSecond > 0 {
lim := s.getCSRRateLimiterWithLimit(rate.Limit(commonCfg.CSRMaxPerSecond))
// Wait up to the small threshold we allow for a token.
ctx, cancel := context.WithTimeout(context.Background(), csrLimitWait)
defer cancel()
if lim.Wait(ctx) != nil {
return ErrRateLimited
}
} else if commonCfg.CSRMaxConcurrent > 0 {
s.csrConcurrencyLimiter.SetSize(int64(commonCfg.CSRMaxConcurrent))
ctx, cancel := context.WithTimeout(context.Background(), csrLimitWait)
defer cancel()
if err := s.csrConcurrencyLimiter.Acquire(ctx); err != nil {
return ErrRateLimited
}
defer s.csrConcurrencyLimiter.Release()
}
// All seems to be in order, actually sign it.
pem, err := provider.Sign(csr)
if err != nil {
return err
}
// Append any intermediates needed by this root.
for _, p := range caRoot.IntermediateCerts {
pem = strings.TrimSpace(pem) + "\n" + p
}
// Append our local CA's intermediate if there is one.
inter, err := provider.ActiveIntermediate()
if err != nil {
return err
}
root, err := provider.ActiveRoot()
if err != nil {
return err
}
if inter != root {
pem = strings.TrimSpace(pem) + "\n" + inter
}
// TODO(banks): when we implement IssuedCerts table we can use the insert to
// that as the raft index to return in response.
//
// UPDATE(mkeeler): The original implementation relied on updating the CAConfig
// and using its index as the ModifyIndex for certs. This was buggy. The long
// term goal is still to insert some metadata into raft about the certificates
// and use that raft index for the ModifyIndex. This is a partial step in that
// direction except that we only are setting an index and not storing the
// metadata.
req := structs.CALeafRequest{
Op: structs.CALeafOpIncrementIndex,
Datacenter: s.srv.config.Datacenter,
WriteRequest: structs.WriteRequest{Token: args.Token},
}
resp, err := s.srv.raftApply(structs.ConnectCALeafRequestType|structs.IgnoreUnknownTypeFlag, &req)
if err != nil {
return err
}
modIdx, ok := resp.(uint64)
if !ok {
return fmt.Errorf("Invalid response from updating the leaf cert index")
}
cert, err := connect.ParseCert(pem)
if err != nil {
return err
}
// Set the response
*reply = structs.IssuedCert{
SerialNumber: connect.HexString(cert.SerialNumber.Bytes()),
CertPEM: pem,
Service: serviceID.Service,
ServiceURI: cert.URIs[0].String(),
ValidAfter: cert.NotBefore,
ValidBefore: cert.NotAfter,
RaftIndex: structs.RaftIndex{
ModifyIndex: modIdx,
CreateIndex: modIdx,
},
}
return nil
}