consul/agent/proxycfg/testing.go

354 lines
9.9 KiB
Go

package proxycfg
import (
"context"
"sync"
"sync/atomic"
"time"
"github.com/hashicorp/consul/agent/cache"
cachetype "github.com/hashicorp/consul/agent/cache-types"
"github.com/hashicorp/consul/agent/connect"
"github.com/hashicorp/consul/agent/structs"
"github.com/mitchellh/go-testing-interface"
"github.com/stretchr/testify/require"
)
// TestCacheTypes encapsulates all the different cache types proxycfg.State will
// watch/request for controlling one during testing.
type TestCacheTypes struct {
roots *ControllableCacheType
leaf *ControllableCacheType
intentions *ControllableCacheType
health *ControllableCacheType
query *ControllableCacheType
compiledChain *ControllableCacheType
}
// NewTestCacheTypes creates a set of ControllableCacheTypes for all types that
// proxycfg will watch suitable for testing a proxycfg.State or Manager.
func NewTestCacheTypes(t testing.T) *TestCacheTypes {
t.Helper()
ct := &TestCacheTypes{
roots: NewControllableCacheType(t),
leaf: NewControllableCacheType(t),
intentions: NewControllableCacheType(t),
health: NewControllableCacheType(t),
query: NewControllableCacheType(t),
compiledChain: NewControllableCacheType(t),
}
ct.query.blocking = false
return ct
}
// TestCacheWithTypes registers ControllableCacheTypes for all types that
// proxycfg will watch suitable for testing a proxycfg.State or Manager.
func TestCacheWithTypes(t testing.T, types *TestCacheTypes) *cache.Cache {
c := cache.TestCache(t)
c.RegisterType(cachetype.ConnectCARootName, types.roots, &cache.RegisterOptions{
Refresh: true,
RefreshTimer: 0,
RefreshTimeout: 10 * time.Minute,
})
c.RegisterType(cachetype.ConnectCALeafName, types.leaf, &cache.RegisterOptions{
Refresh: true,
RefreshTimer: 0,
RefreshTimeout: 10 * time.Minute,
})
c.RegisterType(cachetype.IntentionMatchName, types.intentions, &cache.RegisterOptions{
Refresh: true,
RefreshTimer: 0,
RefreshTimeout: 10 * time.Minute,
})
c.RegisterType(cachetype.HealthServicesName, types.health, &cache.RegisterOptions{
Refresh: true,
RefreshTimer: 0,
RefreshTimeout: 10 * time.Minute,
})
c.RegisterType(cachetype.PreparedQueryName, types.query, &cache.RegisterOptions{
Refresh: false,
})
c.RegisterType(cachetype.CompiledDiscoveryChainName, types.compiledChain, &cache.RegisterOptions{
Refresh: true,
RefreshTimer: 0,
RefreshTimeout: 10 * time.Minute,
})
return c
}
// TestCerts generates a CA and Leaf suitable for returning as mock CA
// root/leaf cache requests.
func TestCerts(t testing.T) (*structs.IndexedCARoots, *structs.IssuedCert) {
t.Helper()
ca := connect.TestCA(t, nil)
roots := &structs.IndexedCARoots{
ActiveRootID: ca.ID,
TrustDomain: connect.TestClusterID,
Roots: []*structs.CARoot{ca},
}
return roots, TestLeafForCA(t, ca)
}
// TestLeafForCA generates new Leaf suitable for returning as mock CA
// leaf cache response, signed by an existing CA.
func TestLeafForCA(t testing.T, ca *structs.CARoot) *structs.IssuedCert {
leafPEM, pkPEM := connect.TestLeaf(t, "web", ca)
leafCert, err := connect.ParseCert(leafPEM)
require.NoError(t, err)
return &structs.IssuedCert{
SerialNumber: connect.HexString(leafCert.SerialNumber.Bytes()),
CertPEM: leafPEM,
PrivateKeyPEM: pkPEM,
Service: "web",
ServiceURI: leafCert.URIs[0].String(),
ValidAfter: leafCert.NotBefore,
ValidBefore: leafCert.NotAfter,
}
}
// TestIntentions returns a sample intentions match result useful to
// mocking service discovery cache results.
func TestIntentions(t testing.T) *structs.IndexedIntentionMatches {
return &structs.IndexedIntentionMatches{
Matches: []structs.Intentions{
[]*structs.Intention{
&structs.Intention{
ID: "foo",
SourceNS: "default",
SourceName: "billing",
DestinationNS: "default",
DestinationName: "web",
Action: structs.IntentionActionAllow,
},
},
},
}
}
// TestUpstreamNodes returns a sample service discovery result useful to
// mocking service discovery cache results.
func TestUpstreamNodes(t testing.T) structs.CheckServiceNodes {
return structs.CheckServiceNodes{
structs.CheckServiceNode{
Node: &structs.Node{
ID: "test1",
Node: "test1",
Address: "10.10.1.1",
Datacenter: "dc1",
},
Service: structs.TestNodeService(t),
},
structs.CheckServiceNode{
Node: &structs.Node{
ID: "test2",
Node: "test2",
Address: "10.10.1.2",
Datacenter: "dc1",
},
Service: structs.TestNodeService(t),
},
}
}
func TestGatewayNodesDC2(t testing.T) structs.CheckServiceNodes {
return structs.CheckServiceNodes{
structs.CheckServiceNode{
Node: &structs.Node{
ID: "mesh-gateway-1",
Node: "mesh-gateway",
Address: "10.0.1.1",
Datacenter: "dc2",
},
Service: structs.TestNodeServiceMeshGatewayWithAddrs(t,
"10.0.1.1", 8443,
structs.ServiceAddress{Address: "10.0.1.1", Port: 8443},
structs.ServiceAddress{Address: "198.18.1.1", Port: 443}),
},
structs.CheckServiceNode{
Node: &structs.Node{
ID: "mesh-gateway-2",
Node: "mesh-gateway",
Address: "10.0.1.2",
Datacenter: "dc2",
},
Service: structs.TestNodeServiceMeshGatewayWithAddrs(t,
"10.0.1.2", 8443,
structs.ServiceAddress{Address: "10.0.1.2", Port: 8443},
structs.ServiceAddress{Address: "198.18.1.2", Port: 443}),
},
}
}
func TestGatewayServicesDC1(t testing.T) structs.CheckServiceNodes {
return structs.CheckServiceNodes{
structs.CheckServiceNode{
Node: &structs.Node{
ID: "foo-node-1",
Node: "foo-node-1",
Address: "10.1.1.1",
Datacenter: "dc1",
},
Service: structs.TestNodeServiceProxy(t),
},
structs.CheckServiceNode{
Node: &structs.Node{
ID: "foo-node-2",
Node: "foo-node-2",
Address: "10.1.1.2",
Datacenter: "dc1",
},
Service: structs.TestNodeServiceProxy(t),
},
}
}
// TestConfigSnapshot returns a fully populated snapshot
func TestConfigSnapshot(t testing.T) *ConfigSnapshot {
roots, leaf := TestCerts(t)
return &ConfigSnapshot{
Kind: structs.ServiceKindConnectProxy,
Service: "web-sidecar-proxy",
ProxyID: "web-sidecar-proxy",
Address: "0.0.0.0",
Port: 9999,
Proxy: structs.ConnectProxyConfig{
DestinationServiceID: "web",
DestinationServiceName: "web",
LocalServiceAddress: "127.0.0.1",
LocalServicePort: 8080,
Config: map[string]interface{}{
"foo": "bar",
},
Upstreams: structs.TestUpstreams(t),
},
Roots: roots,
ConnectProxy: configSnapshotConnectProxy{
Leaf: leaf,
UpstreamEndpoints: map[string]structs.CheckServiceNodes{
"db": TestUpstreamNodes(t),
},
},
Datacenter: "dc1",
}
}
func TestConfigSnapshotMeshGateway(t testing.T) *ConfigSnapshot {
roots, _ := TestCerts(t)
return &ConfigSnapshot{
Kind: structs.ServiceKindMeshGateway,
Service: "mesh-gateway",
ProxyID: "mesh-gateway",
Address: "1.2.3.4",
Port: 8443,
Proxy: structs.ConnectProxyConfig{
Config: map[string]interface{}{},
},
TaggedAddresses: map[string]structs.ServiceAddress{
"lan": structs.ServiceAddress{
Address: "1.2.3.4",
Port: 8443,
},
"wan": structs.ServiceAddress{
Address: "198.18.0.1",
Port: 443,
},
},
Roots: roots,
Datacenter: "dc1",
MeshGateway: configSnapshotMeshGateway{
WatchedServices: map[string]context.CancelFunc{
"foo": nil,
"bar": nil,
},
WatchedDatacenters: map[string]context.CancelFunc{
"dc2": nil,
},
ServiceGroups: map[string]structs.CheckServiceNodes{
"foo": TestGatewayServicesDC1(t),
},
GatewayGroups: map[string]structs.CheckServiceNodes{
"dc2": TestGatewayNodesDC2(t),
},
},
}
}
// ControllableCacheType is a cache.Type that simulates a typical blocking RPC
// but lets us control the responses and when they are delivered easily.
type ControllableCacheType struct {
index uint64
value atomic.Value
// Need a condvar to trigger all blocking requests (there might be multiple
// for same type due to background refresh and timing issues) when values
// change. Chans make it nondeterministic which one triggers or need extra
// locking to coordinate replacing after close etc.
triggerMu sync.Mutex
trigger *sync.Cond
blocking bool
lastReq atomic.Value
}
// NewControllableCacheType returns a cache.Type that can be controlled for
// testing.
func NewControllableCacheType(t testing.T) *ControllableCacheType {
c := &ControllableCacheType{
index: 5,
blocking: true,
}
c.trigger = sync.NewCond(&c.triggerMu)
return c
}
// Set sets the response value to be returned from subsequent cache gets for the
// type.
func (ct *ControllableCacheType) Set(value interface{}) {
atomic.AddUint64(&ct.index, 1)
ct.value.Store(value)
ct.triggerMu.Lock()
ct.trigger.Broadcast()
ct.triggerMu.Unlock()
}
// Fetch implements cache.Type. It simulates blocking or non-blocking queries.
func (ct *ControllableCacheType) Fetch(opts cache.FetchOptions, req cache.Request) (cache.FetchResult, error) {
index := atomic.LoadUint64(&ct.index)
ct.lastReq.Store(req)
shouldBlock := ct.blocking && opts.MinIndex > 0 && opts.MinIndex == index
if shouldBlock {
// Wait for return to be triggered. We ignore timeouts based on opts.Timeout
// since in practice they will always be way longer than our tests run for
// and the caller can simulate timeout by triggering return without changing
// index or value.
ct.triggerMu.Lock()
ct.trigger.Wait()
ct.triggerMu.Unlock()
}
// reload index as it probably got bumped
index = atomic.LoadUint64(&ct.index)
val := ct.value.Load()
if err, ok := val.(error); ok {
return cache.FetchResult{
Value: nil,
Index: index,
}, err
}
return cache.FetchResult{
Value: val,
Index: index,
}, nil
}
// SupportsBlocking implements cache.Type
func (ct *ControllableCacheType) SupportsBlocking() bool {
return ct.blocking
}