consul/agent/leafcert/leafcert.go

557 lines
17 KiB
Go

package leafcert
import (
"context"
"errors"
"fmt"
"sync"
"time"
"github.com/armon/go-metrics"
"github.com/hashicorp/go-hclog"
"golang.org/x/sync/singleflight"
"golang.org/x/time/rate"
"github.com/hashicorp/consul/agent/cache"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/lib/ttlcache"
)
const (
DefaultLastGetTTL = 72 * time.Hour // reasonable default is days
// DefaultLeafCertRefreshRate is the default rate at which certs can be refreshed.
// This defaults to not being limited
DefaultLeafCertRefreshRate = rate.Inf
// DefaultLeafCertRefreshMaxBurst is the number of cache entry fetches that can
// occur in a burst.
DefaultLeafCertRefreshMaxBurst = 2
DefaultLeafCertRefreshBackoffMin = 3 // 3 attempts before backing off
DefaultLeafCertRefreshMaxWait = 1 * time.Minute // maximum backoff wait time
DefaultQueryTimeout = 10 * time.Minute
)
type Config struct {
// LastGetTTL is the time that the certs returned by this type remain in
// the cache after the last get operation. If a cert isn't accessed within
// this duration, the certs is purged and background refreshing will cease.
LastGetTTL time.Duration
// LeafCertRefreshMaxBurst max burst size of RateLimit for a single cache entry
LeafCertRefreshMaxBurst int
// LeafCertRefreshRate represents the max calls/sec for a single cache entry
LeafCertRefreshRate rate.Limit
// LeafCertRefreshBackoffMin is the number of attempts to wait before
// backing off.
//
// Mostly configurable just for testing.
LeafCertRefreshBackoffMin uint
// LeafCertRefreshMaxWait is the maximum backoff wait time.
//
// Mostly configurable just for testing.
LeafCertRefreshMaxWait time.Duration
// TestOverrideCAChangeInitialDelay allows overriding the random jitter
// after a root change with a fixed delay. So far ths is only done in
// tests. If it's zero the caChangeInitialSpreadDefault maximum jitter will
// be used but if set, it overrides and provides a fixed delay. To
// essentially disable the delay in tests they can set it to 1 nanosecond.
// We may separately allow configuring the jitter limit by users later but
// this is different and for tests only since we need to set a
// deterministic time delay in order to test the behavior here fully and
// determinstically.
TestOverrideCAChangeInitialDelay time.Duration
}
func (c Config) withDefaults() Config {
if c.LastGetTTL <= 0 {
c.LastGetTTL = DefaultLastGetTTL
}
if c.LeafCertRefreshRate == 0.0 {
c.LeafCertRefreshRate = DefaultLeafCertRefreshRate
}
if c.LeafCertRefreshMaxBurst == 0 {
c.LeafCertRefreshMaxBurst = DefaultLeafCertRefreshMaxBurst
}
if c.LeafCertRefreshBackoffMin == 0 {
c.LeafCertRefreshBackoffMin = DefaultLeafCertRefreshBackoffMin
}
if c.LeafCertRefreshMaxWait == 0 {
c.LeafCertRefreshMaxWait = DefaultLeafCertRefreshMaxWait
}
return c
}
type Deps struct {
Config Config
Logger hclog.Logger
// RootsReader is an interface to access connect CA roots.
RootsReader RootsReader
// CertSigner is an interface to remotely sign certificates.
CertSigner CertSigner
}
type RootsReader interface {
Get() (*structs.IndexedCARoots, error)
Notify(ctx context.Context, correlationID string, ch chan<- cache.UpdateEvent) error
}
type CertSigner interface {
SignCert(ctx context.Context, args *structs.CASignRequest) (*structs.IssuedCert, error)
}
func NewManager(deps Deps) *Manager {
deps.Config = deps.Config.withDefaults()
if deps.Logger == nil {
deps.Logger = hclog.NewNullLogger()
}
if deps.RootsReader == nil {
panic("RootsReader is required")
}
if deps.CertSigner == nil {
panic("CertSigner is required")
}
m := &Manager{
config: deps.Config,
logger: deps.Logger,
certSigner: deps.CertSigner,
rootsReader: deps.RootsReader,
//
certs: make(map[string]*certData),
certsExpiryHeap: ttlcache.NewExpiryHeap(),
}
m.ctx, m.ctxCancel = context.WithCancel(context.Background())
m.rootWatcher = &rootWatcher{
ctx: m.ctx,
rootsReader: m.rootsReader,
}
// Start the expiry watcher
go m.runExpiryLoop()
return m
}
type Manager struct {
logger hclog.Logger
// config contains agent configuration necessary for the cert manager to operate.
config Config
// rootsReader is an interface to access connect CA roots.
rootsReader RootsReader
// certSigner is an interface to remotely sign certificates.
certSigner CertSigner
// rootWatcher helps let multiple requests for leaf certs to coordinate
// sharing a single long-lived watch for the root certs. This allows the
// leaf cert requests to notice when the roots rotate and trigger their
// reissuance.
rootWatcher *rootWatcher
// This is the "top-level" internal context. This is used to cancel
// background operations.
ctx context.Context
ctxCancel context.CancelFunc
// lock guards access to certs and certsExpiryHeap
lock sync.RWMutex
certs map[string]*certData
certsExpiryHeap *ttlcache.ExpiryHeap
// certGroup is a singleflight group keyed identically to the certs map.
// When the leaf cert itself needs replacement requests will coalesce
// together through this chokepoint.
certGroup singleflight.Group
}
func (m *Manager) getCertData(key string) *certData {
m.lock.RLock()
cd, ok := m.certs[key]
m.lock.RUnlock()
if ok {
return cd
}
m.lock.Lock()
defer m.lock.Unlock()
cd, ok = m.certs[key]
if !ok {
cd = &certData{
expiry: m.certsExpiryHeap.Add(key, m.config.LastGetTTL),
refreshRateLimiter: rate.NewLimiter(
m.config.LeafCertRefreshRate,
m.config.LeafCertRefreshMaxBurst,
),
}
m.certs[key] = cd
metrics.SetGauge([]string{"leaf-certs", "entries_count"}, float32(len(m.certs)))
}
return cd
}
// Stop stops any background work and frees all resources for the manager.
// Current fetch requests are allowed to continue to completion and callers may
// still access the current leaf cert values so coordination isn't needed with
// callers, however no background activity will continue. It's intended to
// close the manager at agent shutdown so no further requests should be made,
// however concurrent or in-flight ones won't break.
func (m *Manager) Stop() {
if m.ctxCancel != nil {
m.ctxCancel()
m.ctxCancel = nil
}
}
// Get returns the leaf cert for the request. If data satisfying the
// minimum index is present, it is returned immediately. Otherwise,
// this will block until the cert is refreshed or the request timeout is
// reached.
//
// Multiple Get calls for the same logical request will block on a single
// network request.
//
// The timeout specified by the request will be the timeout on the cache
// Get, and does not correspond to the timeout of any background data
// fetching. If the timeout is reached before data satisfying the minimum
// index is retrieved, the last known value (maybe nil) is returned. No
// error is returned on timeout. This matches the behavior of Consul blocking
// queries.
func (m *Manager) Get(ctx context.Context, req *ConnectCALeafRequest) (*structs.IssuedCert, cache.ResultMeta, error) {
// Lightweight copy this object so that manipulating req doesn't race.
dup := *req
req = &dup
// We don't want non-blocking queries to return expired leaf certs
// or leaf certs not valid under the current CA. So always revalidate
// the leaf cert on non-blocking queries (ie when MinQueryIndex == 0)
//
// NOTE: This conditional was formerly only in the API endpoint.
if req.MinQueryIndex == 0 {
req.MustRevalidate = true
}
return m.internalGet(ctx, req)
}
func (m *Manager) internalGet(ctx context.Context, req *ConnectCALeafRequest) (*structs.IssuedCert, cache.ResultMeta, error) {
key := req.Key()
if key == "" {
return nil, cache.ResultMeta{}, fmt.Errorf("a key is required")
}
if req.MaxQueryTime <= 0 {
req.MaxQueryTime = DefaultQueryTimeout
}
timeoutTimer := time.NewTimer(req.MaxQueryTime)
defer timeoutTimer.Stop()
// First time through
first := true
for {
// Get the current value
cd := m.getCertData(key)
cd.lock.Lock()
var (
existing = cd.value
existingIndex = cd.index
refreshing = cd.refreshing
fetchedAt = cd.fetchedAt
lastFetchErr = cd.lastFetchErr
expiry = cd.expiry
)
cd.lock.Unlock()
shouldReplaceCert := certNeedsUpdate(req, existingIndex, existing, refreshing)
if expiry != nil {
// The entry already exists in the TTL heap, touch it to keep it alive since
// this Get is still interested in the value. Note that we used to only do
// this in the `entryValid` block below but that means that a cache entry
// will expire after it's TTL regardless of how many callers are waiting for
// updates in this method in a couple of cases:
//
// 1. If the agent is disconnected from servers for the TTL then the client
// will be in backoff getting errors on each call to Get and since an
// errored cache entry has Valid = false it won't be touching the TTL.
//
// 2. If the value is just not changing then the client's current index
// will be equal to the entry index and entryValid will be false. This
// is a common case!
//
// But regardless of the state of the entry, assuming it's already in the
// TTL heap, we should touch it every time around here since this caller at
// least still cares about the value!
m.lock.Lock()
m.certsExpiryHeap.Update(expiry.Index(), m.config.LastGetTTL)
m.lock.Unlock()
}
if !shouldReplaceCert {
meta := cache.ResultMeta{
Index: existingIndex,
}
if first {
meta.Hit = true
}
// For non-background refresh types, the age is just how long since we
// fetched it last.
if !fetchedAt.IsZero() {
meta.Age = time.Since(fetchedAt)
}
// We purposely do not return an error here since the cache only works with
// fetching values that either have a value or have an error, but not both.
// The Error may be non-nil in the entry in the case that an error has
// occurred _since_ the last good value, but we still want to return the
// good value to clients that are not requesting a specific version. The
// effect of this is that blocking clients will all see an error immediately
// without waiting a whole timeout to see it, but clients that just look up
// cache with an older index than the last valid result will still see the
// result and not the error here. I.e. the error is not "cached" without a
// new fetch attempt occurring, but the last good value can still be fetched
// from cache.
return existing, meta, nil
}
// If this isn't our first time through and our last value has an error, then
// we return the error. This has the behavior that we don't sit in a retry
// loop getting the same error for the entire duration of the timeout.
// Instead, we make one effort to fetch a new value, and if there was an
// error, we return. Note that the invariant is that if both entry.Value AND
// entry.Error are non-nil, the error _must_ be more recent than the Value. In
// other words valid fetches should reset the error. See
// https://github.com/hashicorp/consul/issues/4480.
if !first && lastFetchErr != nil {
return existing, cache.ResultMeta{Index: existingIndex}, lastFetchErr
}
notifyCh := m.triggerCertRefreshInGroup(req, cd)
// No longer our first time through
first = false
select {
case <-ctx.Done():
return nil, cache.ResultMeta{}, ctx.Err()
case <-notifyCh:
// Our fetch returned, retry the get from the cache.
req.MustRevalidate = false
case <-timeoutTimer.C:
// Timeout on the cache read, just return whatever we have.
return existing, cache.ResultMeta{Index: existingIndex}, nil
}
}
}
func certNeedsUpdate(req *ConnectCALeafRequest, index uint64, value *structs.IssuedCert, refreshing bool) bool {
if value == nil {
return true
}
if req.MinQueryIndex > 0 && req.MinQueryIndex >= index {
// MinIndex was given and matches or is higher than current value so we
// ignore the cache and fallthrough to blocking on a new value.
return true
}
// Check if re-validate is requested. If so the first time round the
// loop is not a hit but subsequent ones should be treated normally.
if req.MustRevalidate {
// It is important to note that this block ONLY applies when we are not
// in indefinite refresh mode (where the underlying goroutine will
// continue to re-query for data).
//
// In this mode goroutines have a 1:1 relationship to RPCs that get
// executed, and importantly they DO NOT SLEEP after executing.
//
// This means that a running goroutine for this cache entry extremely
// strongly implies that the RPC has not yet completed, which is why
// this check works for the revalidation-avoidance optimization here.
if refreshing {
// There is an active goroutine performing a blocking query for
// this data, which has not returned.
//
// We can logically deduce that the contents of the cache are
// actually current, and we can simply return this while leaving
// the blocking query alone.
return false
} else {
return true
}
}
return false
}
func (m *Manager) triggerCertRefreshInGroup(req *ConnectCALeafRequest, cd *certData) <-chan singleflight.Result {
// Lightweight copy this object so that manipulating req doesn't race.
dup := *req
req = &dup
if req.MaxQueryTime == 0 {
req.MaxQueryTime = DefaultQueryTimeout
}
// At this point, we know we either don't have a cert at all or the
// cert we have is too old. We need to mint a new one.
//
// We use a singleflight group to coordinate only one request driving
// the async update to the key at once.
//
// NOTE: this anonymous function only has one goroutine in it per key at all times
return m.certGroup.DoChan(req.Key(), func() (any, error) {
cd.lock.Lock()
var (
shouldReplaceCert = certNeedsUpdate(req, cd.index, cd.value, cd.refreshing)
rateLimiter = cd.refreshRateLimiter
lastIndex = cd.index
)
cd.lock.Unlock()
if !shouldReplaceCert {
// This handles the case where a fetch succeeded after checking for
// its existence in Get. This ensures that we don't miss updates
// since we don't hold the lock between the read and then the
// refresh trigger.
return nil, nil
}
if err := rateLimiter.Wait(m.ctx); err != nil {
// NOTE: this can only happen when the entire cache is being
// shutdown and isn't something that can happen normally.
return nil, nil
}
cd.MarkRefreshing(true)
defer cd.MarkRefreshing(false)
req.MinQueryIndex = lastIndex
// Start building the new entry by blocking on the fetch.
m.refreshLeafAndUpdate(req, cd)
return nil, nil
})
}
// testGet is a way for the test code to do a get but from the middle of the
// logic stack, skipping some of the caching logic.
func (m *Manager) testGet(req *ConnectCALeafRequest) (uint64, *structs.IssuedCert, error) {
cd := m.getCertData(req.Key())
m.refreshLeafAndUpdate(req, cd)
cd.lock.Lock()
var (
index = cd.index
cert = cd.value
err = cd.lastFetchErr
)
cd.lock.Unlock()
if err != nil {
return 0, nil, err
}
return index, cert, nil
}
// refreshLeafAndUpdate will try to refresh the leaf and persist the updated
// data back to the in-memory store.
//
// NOTE: this function only has one goroutine in it per key at all times
func (m *Manager) refreshLeafAndUpdate(req *ConnectCALeafRequest, cd *certData) {
existing, state := cd.GetValueAndState()
newCert, updatedState, err := m.attemptLeafRefresh(req, existing, state)
cd.Update(newCert, updatedState, err)
}
// Prepopulate puts a cert in manually. This is useful when the correct initial
// value is known and the cache shouldn't refetch the same thing on startup. It
// is used to set AgentLeafCert when AutoEncrypt.TLS is turned on. The manager
// itself cannot fetch that the first time because it requires a special
// RPCType. Subsequent runs are fine though.
func (m *Manager) Prepopulate(
ctx context.Context,
key string,
index uint64,
value *structs.IssuedCert,
authorityKeyID string,
) error {
if value == nil {
return errors.New("value is required")
}
cd := m.getCertData(key)
cd.lock.Lock()
defer cd.lock.Unlock()
cd.index = index
cd.value = value
cd.state = fetchState{
authorityKeyID: authorityKeyID,
forceExpireAfter: time.Time{},
consecutiveRateLimitErrs: 0,
activeRootRotationStart: time.Time{},
}
return nil
}
// runExpiryLoop is a blocking function that watches the expiration
// heap and invalidates cert entries that have expired.
func (m *Manager) runExpiryLoop() {
for {
m.lock.RLock()
timer := m.certsExpiryHeap.Next()
m.lock.RUnlock()
select {
case <-m.ctx.Done():
timer.Stop()
return
case <-m.certsExpiryHeap.NotifyCh:
timer.Stop()
continue
case <-timer.Wait():
m.lock.Lock()
entry := timer.Entry
// Entry expired! Remove it.
delete(m.certs, entry.Key())
m.certsExpiryHeap.Remove(entry.Index())
// Set some metrics
metrics.IncrCounter([]string{"leaf-certs", "evict_expired"}, 1)
metrics.SetGauge([]string{"leaf-certs", "entries_count"}, float32(len(m.certs)))
m.lock.Unlock()
}
}
}