mirror of
https://github.com/status-im/consul.git
synced 2025-01-11 14:24:39 +00:00
9dc7194321
See https://github.com/hashicorp/consul/issues/3977 While trying to improve furthermore #3948 (This pull request is still valid since we are not using Compression to compute the result anyway). I saw a strange behaviour of dns library. Basically, msg.Len() and len(msg.Pack()) disagree on Message len. Thus, calculation of DNS response is false consul relies on msg.Len() instead of the result of Pack() This is linked to miekg/dns#453 and a fix has been provided with miekg/dns#454 Would it be possible to upgrade miekg/dns to a more recent function ? Consul might for instance upgrade to a post 1.0 release such as https://github.com/miekg/dns/releases/tag/v1.0.4
94 lines
2.9 KiB
Go
94 lines
2.9 KiB
Go
package dns
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/dsa"
|
|
"crypto/ecdsa"
|
|
"crypto/rsa"
|
|
"math/big"
|
|
"strconv"
|
|
|
|
"golang.org/x/crypto/ed25519"
|
|
)
|
|
|
|
const format = "Private-key-format: v1.3\n"
|
|
|
|
// PrivateKeyString converts a PrivateKey to a string. This string has the same
|
|
// format as the private-key-file of BIND9 (Private-key-format: v1.3).
|
|
// It needs some info from the key (the algorithm), so its a method of the DNSKEY
|
|
// It supports rsa.PrivateKey, ecdsa.PrivateKey and dsa.PrivateKey
|
|
func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
|
|
algorithm := strconv.Itoa(int(r.Algorithm))
|
|
algorithm += " (" + AlgorithmToString[r.Algorithm] + ")"
|
|
|
|
switch p := p.(type) {
|
|
case *rsa.PrivateKey:
|
|
modulus := toBase64(p.PublicKey.N.Bytes())
|
|
e := big.NewInt(int64(p.PublicKey.E))
|
|
publicExponent := toBase64(e.Bytes())
|
|
privateExponent := toBase64(p.D.Bytes())
|
|
prime1 := toBase64(p.Primes[0].Bytes())
|
|
prime2 := toBase64(p.Primes[1].Bytes())
|
|
// Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
|
|
// and from: http://code.google.com/p/go/issues/detail?id=987
|
|
one := big.NewInt(1)
|
|
p1 := big.NewInt(0).Sub(p.Primes[0], one)
|
|
q1 := big.NewInt(0).Sub(p.Primes[1], one)
|
|
exp1 := big.NewInt(0).Mod(p.D, p1)
|
|
exp2 := big.NewInt(0).Mod(p.D, q1)
|
|
coeff := big.NewInt(0).ModInverse(p.Primes[1], p.Primes[0])
|
|
|
|
exponent1 := toBase64(exp1.Bytes())
|
|
exponent2 := toBase64(exp2.Bytes())
|
|
coefficient := toBase64(coeff.Bytes())
|
|
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"Modulus: " + modulus + "\n" +
|
|
"PublicExponent: " + publicExponent + "\n" +
|
|
"PrivateExponent: " + privateExponent + "\n" +
|
|
"Prime1: " + prime1 + "\n" +
|
|
"Prime2: " + prime2 + "\n" +
|
|
"Exponent1: " + exponent1 + "\n" +
|
|
"Exponent2: " + exponent2 + "\n" +
|
|
"Coefficient: " + coefficient + "\n"
|
|
|
|
case *ecdsa.PrivateKey:
|
|
var intlen int
|
|
switch r.Algorithm {
|
|
case ECDSAP256SHA256:
|
|
intlen = 32
|
|
case ECDSAP384SHA384:
|
|
intlen = 48
|
|
}
|
|
private := toBase64(intToBytes(p.D, intlen))
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"PrivateKey: " + private + "\n"
|
|
|
|
case *dsa.PrivateKey:
|
|
T := divRoundUp(divRoundUp(p.PublicKey.Parameters.G.BitLen(), 8)-64, 8)
|
|
prime := toBase64(intToBytes(p.PublicKey.Parameters.P, 64+T*8))
|
|
subprime := toBase64(intToBytes(p.PublicKey.Parameters.Q, 20))
|
|
base := toBase64(intToBytes(p.PublicKey.Parameters.G, 64+T*8))
|
|
priv := toBase64(intToBytes(p.X, 20))
|
|
pub := toBase64(intToBytes(p.PublicKey.Y, 64+T*8))
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"Prime(p): " + prime + "\n" +
|
|
"Subprime(q): " + subprime + "\n" +
|
|
"Base(g): " + base + "\n" +
|
|
"Private_value(x): " + priv + "\n" +
|
|
"Public_value(y): " + pub + "\n"
|
|
|
|
case ed25519.PrivateKey:
|
|
private := toBase64(p[:32])
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"PrivateKey: " + private + "\n"
|
|
|
|
default:
|
|
return ""
|
|
}
|
|
}
|