consul/agent/config.go

2368 lines
81 KiB
Go

package agent
import (
"crypto/tls"
"encoding/base64"
"encoding/json"
"errors"
"fmt"
"io"
"net"
"os"
"path/filepath"
"sort"
"strings"
"time"
"github.com/hashicorp/consul/agent/consul"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/ipaddr"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/consul/tlsutil"
"github.com/hashicorp/consul/types"
"github.com/hashicorp/consul/watch"
"github.com/hashicorp/go-sockaddr/template"
"github.com/mitchellh/mapstructure"
"golang.org/x/time/rate"
)
const (
// SegmentLimit is the maximum number of network segments that may be declared.
SegmentLimit = 64
// SegmentNameLimit is the maximum segment name length.
SegmentNameLimit = 64
)
// Ports is used to simplify the configuration by
// providing default ports, and allowing the addresses
// to only be specified once
type PortConfig struct {
DNS int // DNS Query interface
HTTP int // HTTP API
HTTPS int // HTTPS API
SerfLan int `mapstructure:"serf_lan"` // LAN gossip (Client + Server)
SerfWan int `mapstructure:"serf_wan"` // WAN gossip (Server only)
Server int // Server internal RPC
// RPC is deprecated and is no longer used. It will be removed in a future
// version.
RPC int // CLI RPC
}
// AddressConfig is used to provide address overrides
// for specific services. By default, either ClientAddress
// or ServerAddress is used.
type AddressConfig struct {
DNS string // DNS Query interface
HTTP string // HTTP API
HTTPS string // HTTPS API
// RPC is deprecated and is no longer used. It will be removed in a future
// version.
RPC string // CLI RPC
}
type AdvertiseAddrsConfig struct {
SerfLan *net.TCPAddr `mapstructure:"-"`
SerfLanRaw string `mapstructure:"serf_lan"`
SerfWan *net.TCPAddr `mapstructure:"-"`
SerfWanRaw string `mapstructure:"serf_wan"`
RPC *net.TCPAddr `mapstructure:"-"`
RPCRaw string `mapstructure:"rpc"`
}
// DNSConfig is used to fine tune the DNS sub-system.
// It can be used to control cache values, and stale
// reads
type DNSConfig struct {
// NodeTTL provides the TTL value for a node query
NodeTTL time.Duration `mapstructure:"-"`
NodeTTLRaw string `mapstructure:"node_ttl" json:"-"`
// ServiceTTL provides the TTL value for a service
// query for given service. The "*" wildcard can be used
// to set a default for all services.
ServiceTTL map[string]time.Duration `mapstructure:"-"`
ServiceTTLRaw map[string]string `mapstructure:"service_ttl" json:"-"`
// AllowStale is used to enable lookups with stale
// data. This gives horizontal read scalability since
// any Consul server can service the query instead of
// only the leader.
AllowStale *bool `mapstructure:"allow_stale"`
// EnableTruncate is used to enable setting the truncate
// flag for UDP DNS queries. This allows unmodified
// clients to re-query the consul server using TCP
// when the total number of records exceeds the number
// returned by default for UDP.
EnableTruncate bool `mapstructure:"enable_truncate"`
// UDPAnswerLimit is used to limit the maximum number of DNS Resource
// Records returned in the ANSWER section of a DNS response. This is
// not normally useful and will be limited based on the querying
// protocol, however systems that implemented §6 Rule 9 in RFC3484
// may want to set this to `1` in order to subvert §6 Rule 9 and
// re-obtain the effect of randomized resource records (i.e. each
// answer contains only one IP, but the IP changes every request).
// RFC3484 sorts answers in a deterministic order, which defeats the
// purpose of randomized DNS responses. This RFC has been obsoleted
// by RFC6724 and restores the desired behavior of randomized
// responses, however a large number of Linux hosts using glibc(3)
// implemented §6 Rule 9 and may need this option (e.g. CentOS 5-6,
// Debian Squeeze, etc).
UDPAnswerLimit int `mapstructure:"udp_answer_limit"`
// MaxStale is used to bound how stale of a result is
// accepted for a DNS lookup. This can be used with
// AllowStale to limit how old of a value is served up.
// If the stale result exceeds this, another non-stale
// stale read is performed.
MaxStale time.Duration `mapstructure:"-"`
MaxStaleRaw string `mapstructure:"max_stale" json:"-"`
// OnlyPassing is used to determine whether to filter nodes
// whose health checks are in any non-passing state. By
// default, only nodes in a critical state are excluded.
OnlyPassing bool `mapstructure:"only_passing"`
// DisableCompression is used to control whether DNS responses are
// compressed. In Consul 0.7 this was turned on by default and this
// config was added as an opt-out.
DisableCompression bool `mapstructure:"disable_compression"`
// RecursorTimeout specifies the timeout in seconds
// for Consul's internal dns client used for recursion.
// This value is used for the connection, read and write timeout.
// Default: 2s
RecursorTimeout time.Duration `mapstructure:"-"`
RecursorTimeoutRaw string `mapstructure:"recursor_timeout" json:"-"`
}
// HTTPConfig is used to fine tune the Http sub-system.
type HTTPConfig struct {
// BlockEndpoints is a list of endpoint prefixes to block in the
// HTTP API. Any requests to these will get a 403 response.
BlockEndpoints []string `mapstructure:"block_endpoints"`
// ResponseHeaders are used to add HTTP header response fields to the HTTP API responses.
ResponseHeaders map[string]string `mapstructure:"response_headers"`
}
// RetryJoinEC2 is used to configure discovery of instances via Amazon's EC2 api
type RetryJoinEC2 struct {
// The AWS region to look for instances in
Region string `mapstructure:"region"`
// The tag key and value to use when filtering instances
TagKey string `mapstructure:"tag_key"`
TagValue string `mapstructure:"tag_value"`
// The AWS credentials to use for making requests to EC2
AccessKeyID string `mapstructure:"access_key_id" json:"-"`
SecretAccessKey string `mapstructure:"secret_access_key" json:"-"`
}
// RetryJoinGCE is used to configure discovery of instances via Google Compute
// Engine's API.
type RetryJoinGCE struct {
// The name of the project the instances reside in.
ProjectName string `mapstructure:"project_name"`
// A regular expression (RE2) pattern for the zones you want to discover the instances in.
// Example: us-west1-.*, or us-(?west|east).*.
ZonePattern string `mapstructure:"zone_pattern"`
// The tag value to search for when filtering instances.
TagValue string `mapstructure:"tag_value"`
// A path to a JSON file with the service account credentials necessary to
// connect to GCE. If this is not defined, the following chain is respected:
// 1. A JSON file whose path is specified by the
// GOOGLE_APPLICATION_CREDENTIALS environment variable.
// 2. A JSON file in a location known to the gcloud command-line tool.
// On Windows, this is %APPDATA%/gcloud/application_default_credentials.json.
// On other systems, $HOME/.config/gcloud/application_default_credentials.json.
// 3. On Google Compute Engine, it fetches credentials from the metadata
// server. (In this final case any provided scopes are ignored.)
CredentialsFile string `mapstructure:"credentials_file"`
}
// RetryJoinAzure is used to configure discovery of instances via AzureRM API
type RetryJoinAzure struct {
// The tag name and value to use when filtering instances
TagName string `mapstructure:"tag_name"`
TagValue string `mapstructure:"tag_value"`
// The Azure credentials to use for making requests to AzureRM
SubscriptionID string `mapstructure:"subscription_id" json:"-"`
TenantID string `mapstructure:"tenant_id" json:"-"`
ClientID string `mapstructure:"client_id" json:"-"`
SecretAccessKey string `mapstructure:"secret_access_key" json:"-"`
}
// Limits is used to configure limits enforced by the agent.
type Limits struct {
// RPCRate and RPCMaxBurst control how frequently RPC calls are allowed
// to happen. In any large enough time interval, rate limiter limits the
// rate to RPCRate tokens per second, with a maximum burst size of
// RPCMaxBurst events. As a special case, if RPCRate == Inf (the infinite
// rate), RPCMaxBurst is ignored.
//
// See https://en.wikipedia.org/wiki/Token_bucket for more about token
// buckets.
RPCRate rate.Limit `mapstructure:"rpc_rate"`
RPCMaxBurst int `mapstructure:"rpc_max_burst"`
}
// Performance is used to tune the performance of Consul's subsystems.
type Performance struct {
// RaftMultiplier is an integer multiplier used to scale Raft timing
// parameters: HeartbeatTimeout, ElectionTimeout, and LeaderLeaseTimeout.
RaftMultiplier uint `mapstructure:"raft_multiplier"`
}
// Telemetry is the telemetry configuration for the server
type Telemetry struct {
// StatsiteAddr is the address of a statsite instance. If provided,
// metrics will be streamed to that instance.
StatsiteAddr string `mapstructure:"statsite_address"`
// StatsdAddr is the address of a statsd instance. If provided,
// metrics will be sent to that instance.
StatsdAddr string `mapstructure:"statsd_address"`
// StatsitePrefix is the prefix used to write stats values to. By
// default this is set to 'consul'.
StatsitePrefix string `mapstructure:"statsite_prefix"`
// DisableHostname will disable hostname prefixing for all metrics
DisableHostname bool `mapstructure:"disable_hostname"`
// PrefixFilter is a list of filter rules to apply for allowing/blocking metrics
// by prefix.
PrefixFilter []string `mapstructure:"prefix_filter"`
AllowedPrefixes []string `mapstructure:"-" json:"-"`
BlockedPrefixes []string `mapstructure:"-" json:"-"`
// FilterDefault is the default for whether to allow a metric that's not
// covered by the filter.
FilterDefault *bool `mapstructure:"filter_default"`
// DogStatsdAddr is the address of a dogstatsd instance. If provided,
// metrics will be sent to that instance
DogStatsdAddr string `mapstructure:"dogstatsd_addr"`
// DogStatsdTags are the global tags that should be sent with each packet to dogstatsd
// It is a list of strings, where each string looks like "my_tag_name:my_tag_value"
DogStatsdTags []string `mapstructure:"dogstatsd_tags"`
// Circonus: see https://github.com/circonus-labs/circonus-gometrics
// for more details on the various configuration options.
// Valid configuration combinations:
// - CirconusAPIToken
// metric management enabled (search for existing check or create a new one)
// - CirconusSubmissionUrl
// metric management disabled (use check with specified submission_url,
// broker must be using a public SSL certificate)
// - CirconusAPIToken + CirconusCheckSubmissionURL
// metric management enabled (use check with specified submission_url)
// - CirconusAPIToken + CirconusCheckID
// metric management enabled (use check with specified id)
// CirconusAPIToken is a valid API Token used to create/manage check. If provided,
// metric management is enabled.
// Default: none
CirconusAPIToken string `mapstructure:"circonus_api_token" json:"-"`
// CirconusAPIApp is an app name associated with API token.
// Default: "consul"
CirconusAPIApp string `mapstructure:"circonus_api_app"`
// CirconusAPIURL is the base URL to use for contacting the Circonus API.
// Default: "https://api.circonus.com/v2"
CirconusAPIURL string `mapstructure:"circonus_api_url"`
// CirconusSubmissionInterval is the interval at which metrics are submitted to Circonus.
// Default: 10s
CirconusSubmissionInterval string `mapstructure:"circonus_submission_interval"`
// CirconusCheckSubmissionURL is the check.config.submission_url field from a
// previously created HTTPTRAP check.
// Default: none
CirconusCheckSubmissionURL string `mapstructure:"circonus_submission_url"`
// CirconusCheckID is the check id (not check bundle id) from a previously created
// HTTPTRAP check. The numeric portion of the check._cid field.
// Default: none
CirconusCheckID string `mapstructure:"circonus_check_id"`
// CirconusCheckForceMetricActivation will force enabling metrics, as they are encountered,
// if the metric already exists and is NOT active. If check management is enabled, the default
// behavior is to add new metrics as they are encoutered. If the metric already exists in the
// check, it will *NOT* be activated. This setting overrides that behavior.
// Default: "false"
CirconusCheckForceMetricActivation string `mapstructure:"circonus_check_force_metric_activation"`
// CirconusCheckInstanceID serves to uniquely identify the metrics coming from this "instance".
// It can be used to maintain metric continuity with transient or ephemeral instances as
// they move around within an infrastructure.
// Default: hostname:app
CirconusCheckInstanceID string `mapstructure:"circonus_check_instance_id"`
// CirconusCheckSearchTag is a special tag which, when coupled with the instance id, helps to
// narrow down the search results when neither a Submission URL or Check ID is provided.
// Default: service:app (e.g. service:consul)
CirconusCheckSearchTag string `mapstructure:"circonus_check_search_tag"`
// CirconusCheckTags is a comma separated list of tags to apply to the check. Note that
// the value of CirconusCheckSearchTag will always be added to the check.
// Default: none
CirconusCheckTags string `mapstructure:"circonus_check_tags"`
// CirconusCheckDisplayName is the name for the check which will be displayed in the Circonus UI.
// Default: value of CirconusCheckInstanceID
CirconusCheckDisplayName string `mapstructure:"circonus_check_display_name"`
// CirconusBrokerID is an explicit broker to use when creating a new check. The numeric portion
// of broker._cid. If metric management is enabled and neither a Submission URL nor Check ID
// is provided, an attempt will be made to search for an existing check using Instance ID and
// Search Tag. If one is not found, a new HTTPTRAP check will be created.
// Default: use Select Tag if provided, otherwise, a random Enterprise Broker associated
// with the specified API token or the default Circonus Broker.
// Default: none
CirconusBrokerID string `mapstructure:"circonus_broker_id"`
// CirconusBrokerSelectTag is a special tag which will be used to select a broker when
// a Broker ID is not provided. The best use of this is to as a hint for which broker
// should be used based on *where* this particular instance is running.
// (e.g. a specific geo location or datacenter, dc:sfo)
// Default: none
CirconusBrokerSelectTag string `mapstructure:"circonus_broker_select_tag"`
}
// Autopilot is used to configure helpful features for operating Consul servers.
type Autopilot struct {
// CleanupDeadServers enables the automatic cleanup of dead servers when new ones
// are added to the peer list. Defaults to true.
CleanupDeadServers *bool `mapstructure:"cleanup_dead_servers"`
// LastContactThreshold is the limit on the amount of time a server can go
// without leader contact before being considered unhealthy.
LastContactThreshold *time.Duration `mapstructure:"-" json:"-"`
LastContactThresholdRaw string `mapstructure:"last_contact_threshold"`
// MaxTrailingLogs is the amount of entries in the Raft Log that a server can
// be behind before being considered unhealthy.
MaxTrailingLogs *uint64 `mapstructure:"max_trailing_logs"`
// ServerStabilizationTime is the minimum amount of time a server must be
// in a stable, healthy state before it can be added to the cluster. Only
// applicable with Raft protocol version 3 or higher.
ServerStabilizationTime *time.Duration `mapstructure:"-" json:"-"`
ServerStabilizationTimeRaw string `mapstructure:"server_stabilization_time"`
// (Enterprise-only) RedundancyZoneTag is the Meta tag to use for separating servers
// into zones for redundancy. If left blank, this feature will be disabled.
RedundancyZoneTag string `mapstructure:"redundancy_zone_tag"`
// (Enterprise-only) DisableUpgradeMigration will disable Autopilot's upgrade migration
// strategy of waiting until enough newer-versioned servers have been added to the
// cluster before promoting them to voters.
DisableUpgradeMigration *bool `mapstructure:"disable_upgrade_migration"`
// (Enterprise-only) UpgradeVersionTag is the node tag to use for version info when
// performing upgrade migrations. If left blank, the Consul version will be used.
UpgradeVersionTag string `mapstructure:"upgrade_version_tag"`
}
// (Enterprise-only) NetworkSegment is the configuration for a network segment, which is an
// isolated serf group on the LAN.
type NetworkSegment struct {
// Name is the name of the segment.
Name string `mapstructure:"name"`
// Bind is the bind address for this segment.
Bind string `mapstructure:"bind"`
// Port is the port for this segment.
Port int `mapstructure:"port"`
// RPCListener is whether to bind a separate RPC listener on the bind address
// for this segment.
RPCListener bool `mapstructure:"rpc_listener"`
// Advertise is the advertise address of this segment.
Advertise string `mapstructure:"advertise"`
}
// Config is the configuration that can be set for an Agent.
// Some of this is configurable as CLI flags, but most must
// be set using a configuration file.
type Config struct {
// DevMode enables a fast-path mode of operation to bring up an in-memory
// server with minimal configuration. Useful for developing Consul.
DevMode bool `mapstructure:"-"`
// Limits is used to configure limits enforced by the agent.
Limits Limits `mapstructure:"limits"`
// Performance is used to tune the performance of Consul's subsystems.
Performance Performance `mapstructure:"performance"`
// Bootstrap is used to bring up the first Consul server, and
// permits that node to elect itself leader
Bootstrap bool `mapstructure:"bootstrap"`
// BootstrapExpect tries to automatically bootstrap the Consul cluster,
// by withholding peers until enough servers join.
BootstrapExpect int `mapstructure:"bootstrap_expect"`
// Server controls if this agent acts like a Consul server,
// or merely as a client. Servers have more state, take part
// in leader election, etc.
Server bool `mapstructure:"server"`
// (Enterprise-only) NonVotingServer is whether this server will act as a non-voting member
// of the cluster to help provide read scalability.
NonVotingServer bool `mapstructure:"non_voting_server"`
// Datacenter is the datacenter this node is in. Defaults to dc1
Datacenter string `mapstructure:"datacenter"`
// DataDir is the directory to store our state in
DataDir string `mapstructure:"data_dir"`
// DNSRecursors can be set to allow the DNS servers to recursively
// resolve non-consul domains. It is deprecated, and merges into the
// recursors array.
DNSRecursor string `mapstructure:"recursor"`
// DNSRecursors can be set to allow the DNS servers to recursively
// resolve non-consul domains
DNSRecursors []string `mapstructure:"recursors"`
// DNS configuration
DNSConfig DNSConfig `mapstructure:"dns_config"`
// Domain is the DNS domain for the records. Defaults to "consul."
Domain string `mapstructure:"domain"`
// HTTP configuration
HTTPConfig HTTPConfig `mapstructure:"http_config"`
// Encryption key to use for the Serf communication
EncryptKey string `mapstructure:"encrypt" json:"-"`
// Disables writing the keyring to a file.
DisableKeyringFile bool `mapstructure:"disable_keyring_file"`
// EncryptVerifyIncoming and EncryptVerifyOutgoing are used to enforce
// incoming/outgoing gossip encryption and can be used to upshift to
// encrypted gossip on a running cluster.
EncryptVerifyIncoming *bool `mapstructure:"encrypt_verify_incoming"`
EncryptVerifyOutgoing *bool `mapstructure:"encrypt_verify_outgoing"`
// LogLevel is the level of the logs to putout
LogLevel string `mapstructure:"log_level"`
// Node ID is a unique ID for this node across space and time. Defaults
// to a randomly-generated ID that persists in the data-dir.
NodeID types.NodeID `mapstructure:"node_id"`
// DisableHostNodeID will prevent Consul from using information from the
// host to generate a node ID, and will cause Consul to generate a
// random ID instead.
DisableHostNodeID *bool `mapstructure:"disable_host_node_id"`
// Node name is the name we use to advertise. Defaults to hostname.
NodeName string `mapstructure:"node_name"`
// ClientAddr is used to control the address we bind to for
// client services (DNS, HTTP, HTTPS, RPC)
ClientAddr string `mapstructure:"client_addr"`
// BindAddr is used to control the address we bind to.
// If not specified, the first private IP we find is used.
// This controls the address we use for cluster facing
// services (Gossip, Server RPC)
BindAddr string `mapstructure:"bind_addr"`
// SerfWanBindAddr is used to control the address we bind to.
// If not specified, the first private IP we find is used.
// This controls the address we use for cluster facing
// services (Gossip) Serf
SerfWanBindAddr string `mapstructure:"serf_wan_bind"`
// SerfLanBindAddr is used to control the address we bind to.
// If not specified, the first private IP we find is used.
// This controls the address we use for cluster facing
// services (Gossip) Serf
SerfLanBindAddr string `mapstructure:"serf_lan_bind"`
// AdvertiseAddr is the address we use for advertising our Serf,
// and Consul RPC IP. If not specified, bind address is used.
AdvertiseAddr string `mapstructure:"advertise_addr"`
// AdvertiseAddrs configuration
AdvertiseAddrs AdvertiseAddrsConfig `mapstructure:"advertise_addrs"`
// AdvertiseAddrWan is the address we use for advertising our
// Serf WAN IP. If not specified, the general advertise address is used.
AdvertiseAddrWan string `mapstructure:"advertise_addr_wan"`
// TranslateWanAddrs controls whether or not Consul should prefer
// the "wan" tagged address when doing lookups in remote datacenters.
// See TaggedAddresses below for more details.
TranslateWanAddrs bool `mapstructure:"translate_wan_addrs"`
// Port configurations
Ports PortConfig
// Address configurations
Addresses AddressConfig
// (Enterprise-only) NetworkSegment is the network segment for this client to join.
Segment string `mapstructure:"segment"`
// (Enterprise-only) Segments is the list of network segments for this server to
// initialize.
Segments []NetworkSegment `mapstructure:"segments"`
// Tagged addresses. These are used to publish a set of addresses for
// for a node, which can be used by the remote agent. We currently
// populate only the "wan" tag based on the SerfWan advertise address,
// but this structure is here for possible future features with other
// user-defined tags. The "wan" tag will be used by remote agents if
// they are configured with TranslateWanAddrs set to true.
TaggedAddresses map[string]string
// Node metadata key/value pairs. These are excluded from JSON output
// because they can be reloaded and might be stale when shown from the
// config instead of the local state.
Meta map[string]string `mapstructure:"node_meta" json:"-"`
// LeaveOnTerm controls if Serf does a graceful leave when receiving
// the TERM signal. Defaults true on clients, false on servers. This can
// be changed on reload.
LeaveOnTerm *bool `mapstructure:"leave_on_terminate"`
// SkipLeaveOnInt controls if Serf skips a graceful leave when
// receiving the INT signal. Defaults false on clients, true on
// servers. This can be changed on reload.
SkipLeaveOnInt *bool `mapstructure:"skip_leave_on_interrupt"`
// Autopilot is used to configure helpful features for operating Consul servers.
Autopilot Autopilot `mapstructure:"autopilot"`
Telemetry Telemetry `mapstructure:"telemetry"`
// Protocol is the Consul protocol version to use.
Protocol int `mapstructure:"protocol"`
// RaftProtocol sets the Raft protocol version to use on this server.
RaftProtocol int `mapstructure:"raft_protocol"`
// EnableDebug is used to enable various debugging features
EnableDebug bool `mapstructure:"enable_debug"`
// VerifyIncoming is used to verify the authenticity of incoming connections.
// This means that TCP requests are forbidden, only allowing for TLS. TLS connections
// must match a provided certificate authority. This can be used to force client auth.
VerifyIncoming bool `mapstructure:"verify_incoming"`
// VerifyIncomingRPC is used to verify the authenticity of incoming RPC connections.
// This means that TCP requests are forbidden, only allowing for TLS. TLS connections
// must match a provided certificate authority. This can be used to force client auth.
VerifyIncomingRPC bool `mapstructure:"verify_incoming_rpc"`
// VerifyIncomingHTTPS is used to verify the authenticity of incoming HTTPS connections.
// This means that TCP requests are forbidden, only allowing for TLS. TLS connections
// must match a provided certificate authority. This can be used to force client auth.
VerifyIncomingHTTPS bool `mapstructure:"verify_incoming_https"`
// VerifyOutgoing is used to verify the authenticity of outgoing connections.
// This means that TLS requests are used. TLS connections must match a provided
// certificate authority. This is used to verify authenticity of server nodes.
VerifyOutgoing bool `mapstructure:"verify_outgoing"`
// VerifyServerHostname is used to enable hostname verification of servers. This
// ensures that the certificate presented is valid for server.<datacenter>.<domain>.
// This prevents a compromised client from being restarted as a server, and then
// intercepting request traffic as well as being added as a raft peer. This should be
// enabled by default with VerifyOutgoing, but for legacy reasons we cannot break
// existing clients.
VerifyServerHostname bool `mapstructure:"verify_server_hostname"`
// CAFile is a path to a certificate authority file. This is used with VerifyIncoming
// or VerifyOutgoing to verify the TLS connection.
CAFile string `mapstructure:"ca_file"`
// CAPath is a path to a directory of certificate authority files. This is used with
// VerifyIncoming or VerifyOutgoing to verify the TLS connection.
CAPath string `mapstructure:"ca_path"`
// CertFile is used to provide a TLS certificate that is used for serving TLS connections.
// Must be provided to serve TLS connections.
CertFile string `mapstructure:"cert_file"`
// KeyFile is used to provide a TLS key that is used for serving TLS connections.
// Must be provided to serve TLS connections.
KeyFile string `mapstructure:"key_file"`
// ServerName is used with the TLS certificates to ensure the name we
// provide matches the certificate
ServerName string `mapstructure:"server_name"`
// TLSMinVersion is used to set the minimum TLS version used for TLS connections.
TLSMinVersion string `mapstructure:"tls_min_version"`
// TLSCipherSuites is used to specify the list of supported ciphersuites.
TLSCipherSuites []uint16 `mapstructure:"-" json:"-"`
TLSCipherSuitesRaw string `mapstructure:"tls_cipher_suites"`
// TLSPreferServerCipherSuites specifies whether to prefer the server's ciphersuite
// over the client ciphersuites.
TLSPreferServerCipherSuites bool `mapstructure:"tls_prefer_server_cipher_suites"`
// StartJoin is a list of addresses to attempt to join when the
// agent starts. If Serf is unable to communicate with any of these
// addresses, then the agent will error and exit.
StartJoin []string `mapstructure:"start_join"`
// StartJoinWan is a list of addresses to attempt to join -wan when the
// agent starts. If Serf is unable to communicate with any of these
// addresses, then the agent will error and exit.
StartJoinWan []string `mapstructure:"start_join_wan"`
// RetryJoin is a list of addresses to join with retry enabled.
RetryJoin []string `mapstructure:"retry_join" json:"-"`
// RetryMaxAttempts specifies the maximum number of times to retry joining a
// host on startup. This is useful for cases where we know the node will be
// online eventually.
RetryMaxAttempts int `mapstructure:"retry_max"`
// RetryInterval specifies the amount of time to wait in between join
// attempts on agent start. The minimum allowed value is 1 second and
// the default is 30s.
RetryInterval time.Duration `mapstructure:"-" json:"-"`
RetryIntervalRaw string `mapstructure:"retry_interval"`
// RetryJoinWan is a list of addresses to join -wan with retry enabled.
RetryJoinWan []string `mapstructure:"retry_join_wan"`
// RetryMaxAttemptsWan specifies the maximum number of times to retry joining a
// -wan host on startup. This is useful for cases where we know the node will be
// online eventually.
RetryMaxAttemptsWan int `mapstructure:"retry_max_wan"`
// RetryIntervalWan specifies the amount of time to wait in between join
// -wan attempts on agent start. The minimum allowed value is 1 second and
// the default is 30s.
RetryIntervalWan time.Duration `mapstructure:"-" json:"-"`
RetryIntervalWanRaw string `mapstructure:"retry_interval_wan"`
// ReconnectTimeout* specify the amount of time to wait to reconnect with
// another agent before deciding it's permanently gone. This can be used to
// control the time it takes to reap failed nodes from the cluster.
ReconnectTimeoutLan time.Duration `mapstructure:"-"`
ReconnectTimeoutLanRaw string `mapstructure:"reconnect_timeout"`
ReconnectTimeoutWan time.Duration `mapstructure:"-"`
ReconnectTimeoutWanRaw string `mapstructure:"reconnect_timeout_wan"`
// EnableUI enables the statically-compiled assets for the Consul web UI and
// serves them at the default /ui/ endpoint automatically.
EnableUI bool `mapstructure:"ui"`
// UIDir is the directory containing the Web UI resources.
// If provided, the UI endpoints will be enabled.
UIDir string `mapstructure:"ui_dir"`
// PidFile is the file to store our PID in
PidFile string `mapstructure:"pid_file"`
// EnableSyslog is used to also tee all the logs over to syslog. Only supported
// on linux and OSX. Other platforms will generate an error.
EnableSyslog bool `mapstructure:"enable_syslog"`
// SyslogFacility is used to control where the syslog messages go
// By default, goes to LOCAL0
SyslogFacility string `mapstructure:"syslog_facility"`
// RejoinAfterLeave controls our interaction with the cluster after leave.
// When set to false (default), a leave causes Consul to not rejoin
// the cluster until an explicit join is received. If this is set to
// true, we ignore the leave, and rejoin the cluster on start.
RejoinAfterLeave bool `mapstructure:"rejoin_after_leave"`
// EnableScriptChecks controls whether health checks which execute
// scripts are enabled. This includes regular script checks and Docker
// checks.
EnableScriptChecks bool `mapstructure:"enable_script_checks"`
// CheckUpdateInterval controls the interval on which the output of a health check
// is updated if there is no change to the state. For example, a check in a steady
// state may run every 5 second generating a unique output (timestamp, etc), forcing
// constant writes. This allows Consul to defer the write for some period of time,
// reducing the write pressure when the state is steady.
CheckUpdateInterval time.Duration `mapstructure:"-"`
CheckUpdateIntervalRaw string `mapstructure:"check_update_interval" json:"-"`
// CheckReapInterval controls the interval on which we will look for
// failed checks and reap their associated services, if so configured.
CheckReapInterval time.Duration `mapstructure:"-"`
// CheckDeregisterIntervalMin is the smallest allowed interval to set
// a check's DeregisterCriticalServiceAfter value to.
CheckDeregisterIntervalMin time.Duration `mapstructure:"-"`
// ACLToken is the default token used to make requests if a per-request
// token is not provided. If not configured the 'anonymous' token is used.
ACLToken string `mapstructure:"acl_token" json:"-"`
// ACLAgentMasterToken is a special token that has full read and write
// privileges for this agent, and can be used to call agent endpoints
// when no servers are available.
ACLAgentMasterToken string `mapstructure:"acl_agent_master_token" json:"-"`
// ACLAgentToken is the default token used to make requests for the agent
// itself, such as for registering itself with the catalog. If not
// configured, the 'acl_token' will be used.
ACLAgentToken string `mapstructure:"acl_agent_token" json:"-"`
// ACLMasterToken is used to bootstrap the ACL system. It should be specified
// on the servers in the ACLDatacenter. When the leader comes online, it ensures
// that the Master token is available. This provides the initial token.
ACLMasterToken string `mapstructure:"acl_master_token" json:"-"`
// ACLDatacenter is the central datacenter that holds authoritative
// ACL records. This must be the same for the entire cluster.
// If this is not set, ACLs are not enabled. Off by default.
ACLDatacenter string `mapstructure:"acl_datacenter"`
// ACLTTL is used to control the time-to-live of cached ACLs . This has
// a major impact on performance. By default, it is set to 30 seconds.
ACLTTL time.Duration `mapstructure:"-"`
ACLTTLRaw string `mapstructure:"acl_ttl"`
// ACLDefaultPolicy is used to control the ACL interaction when
// there is no defined policy. This can be "allow" which means
// ACLs are used to black-list, or "deny" which means ACLs are
// white-lists.
ACLDefaultPolicy string `mapstructure:"acl_default_policy"`
// ACLDisabledTTL is used by clients to determine how long they will
// wait to check again with the servers if they discover ACLs are not
// enabled.
ACLDisabledTTL time.Duration `mapstructure:"-"`
// ACLDownPolicy is used to control the ACL interaction when we cannot
// reach the ACLDatacenter and the token is not in the cache.
// There are two modes:
// * allow - Allow all requests
// * deny - Deny all requests
// * extend-cache - Ignore the cache expiration, and allow cached
// ACL's to be used to service requests. This
// is the default. If the ACL is not in the cache,
// this acts like deny.
ACLDownPolicy string `mapstructure:"acl_down_policy"`
// EnableACLReplication is used to turn on ACL replication when using
// /v1/agent/token/acl_replication_token to introduce the token, instead
// of setting acl_replication_token in the config. Setting the token via
// config will also set this to true for backward compatibility.
EnableACLReplication bool `mapstructure:"enable_acl_replication"`
// ACLReplicationToken is used to fetch ACLs from the ACLDatacenter in
// order to replicate them locally. Setting this to a non-empty value
// also enables replication. Replication is only available in datacenters
// other than the ACLDatacenter.
ACLReplicationToken string `mapstructure:"acl_replication_token" json:"-"`
// ACLEnforceVersion8 is used to gate a set of ACL policy features that
// are opt-in prior to Consul 0.8 and opt-out in Consul 0.8 and later.
ACLEnforceVersion8 *bool `mapstructure:"acl_enforce_version_8"`
// Watches are used to monitor various endpoints and to invoke a
// handler to act appropriately. These are managed entirely in the
// agent layer using the standard APIs.
Watches []map[string]interface{} `mapstructure:"watches"`
// DisableRemoteExec is used to turn off the remote execution
// feature. This is for security to prevent unknown scripts from running.
DisableRemoteExec *bool `mapstructure:"disable_remote_exec"`
// DisableUpdateCheck is used to turn off the automatic update and
// security bulletin checking.
DisableUpdateCheck bool `mapstructure:"disable_update_check"`
// DisableAnonymousSignature is used to turn off the anonymous signature
// send with the update check. This is used to deduplicate messages.
DisableAnonymousSignature bool `mapstructure:"disable_anonymous_signature"`
// AEInterval controls the anti-entropy interval. This is how often
// the agent attempts to reconcile its local state with the server's
// representation of our state. Defaults to every 60s.
AEInterval time.Duration `mapstructure:"-" json:"-"`
// DisableCoordinates controls features related to network coordinates.
DisableCoordinates bool `mapstructure:"disable_coordinates"`
// SyncCoordinateRateTarget controls the rate for sending network
// coordinates to the server, in updates per second. This is the max rate
// that the server supports, so we scale our interval based on the size
// of the cluster to try to achieve this in aggregate at the server.
SyncCoordinateRateTarget float64 `mapstructure:"-" json:"-"`
// SyncCoordinateIntervalMin sets the minimum interval that coordinates
// will be sent to the server. We scale the interval based on the cluster
// size, but below a certain interval it doesn't make sense send them any
// faster.
SyncCoordinateIntervalMin time.Duration `mapstructure:"-" json:"-"`
// Checks holds the provided check definitions
Checks []*structs.CheckDefinition `mapstructure:"-" json:"-"`
// Services holds the provided service definitions
Services []*structs.ServiceDefinition `mapstructure:"-" json:"-"`
// ConsulConfig can either be provided or a default one created
ConsulConfig *consul.Config `mapstructure:"-" json:"-"`
// Revision is the GitCommit this maps to
Revision string `mapstructure:"-"`
// Version is the release version number
Version string `mapstructure:"-"`
// VersionPrerelease is a label for pre-release builds
VersionPrerelease string `mapstructure:"-"`
// WatchPlans contains the compiled watches
WatchPlans []*watch.Plan `mapstructure:"-" json:"-"`
// UnixSockets is a map of socket configuration data
UnixSockets UnixSocketConfig `mapstructure:"unix_sockets"`
// Minimum Session TTL
SessionTTLMin time.Duration `mapstructure:"-"`
SessionTTLMinRaw string `mapstructure:"session_ttl_min"`
// deprecated fields
// keep them exported since otherwise the error messages don't show up
DeprecatedAtlasInfrastructure string `mapstructure:"atlas_infrastructure" json:"-"`
DeprecatedAtlasToken string `mapstructure:"atlas_token" json:"-"`
DeprecatedAtlasACLToken string `mapstructure:"atlas_acl_token" json:"-"`
DeprecatedAtlasJoin bool `mapstructure:"atlas_join" json:"-"`
DeprecatedAtlasEndpoint string `mapstructure:"atlas_endpoint" json:"-"`
DeprecatedHTTPAPIResponseHeaders map[string]string `mapstructure:"http_api_response_headers"`
DeprecatedRetryJoinEC2 RetryJoinEC2 `mapstructure:"retry_join_ec2"`
DeprecatedRetryJoinGCE RetryJoinGCE `mapstructure:"retry_join_gce"`
DeprecatedRetryJoinAzure RetryJoinAzure `mapstructure:"retry_join_azure"`
}
// IncomingHTTPSConfig returns the TLS configuration for HTTPS
// connections to consul.
func (c *Config) IncomingHTTPSConfig() (*tls.Config, error) {
tc := &tlsutil.Config{
VerifyIncoming: c.VerifyIncoming || c.VerifyIncomingHTTPS,
VerifyOutgoing: c.VerifyOutgoing,
CAFile: c.CAFile,
CAPath: c.CAPath,
CertFile: c.CertFile,
KeyFile: c.KeyFile,
NodeName: c.NodeName,
ServerName: c.ServerName,
TLSMinVersion: c.TLSMinVersion,
CipherSuites: c.TLSCipherSuites,
PreferServerCipherSuites: c.TLSPreferServerCipherSuites,
}
return tc.IncomingTLSConfig()
}
type ProtoAddr struct {
Proto, Net, Addr string
}
func (p ProtoAddr) String() string {
return p.Proto + "://" + p.Addr
}
func (c *Config) DNSAddrs() ([]ProtoAddr, error) {
if c.Ports.DNS <= 0 {
return nil, nil
}
a, err := c.ClientListener(c.Addresses.DNS, c.Ports.DNS)
if err != nil {
return nil, err
}
addrs := []ProtoAddr{
{"dns", "tcp", a.String()},
{"dns", "udp", a.String()},
}
return addrs, nil
}
// HTTPAddrs returns the bind addresses for the HTTP server and
// the application protocol which should be served, e.g. 'http'
// or 'https'.
func (c *Config) HTTPAddrs() ([]ProtoAddr, error) {
var addrs []ProtoAddr
if c.Ports.HTTP > 0 {
a, err := c.ClientListener(c.Addresses.HTTP, c.Ports.HTTP)
if err != nil {
return nil, err
}
addrs = append(addrs, ProtoAddr{"http", a.Network(), a.String()})
}
if c.Ports.HTTPS > 0 && c.CertFile != "" && c.KeyFile != "" {
a, err := c.ClientListener(c.Addresses.HTTPS, c.Ports.HTTPS)
if err != nil {
return nil, err
}
addrs = append(addrs, ProtoAddr{"https", a.Network(), a.String()})
}
return addrs, nil
}
// Bool is used to initialize bool pointers in struct literals.
func Bool(b bool) *bool {
return &b
}
// Uint64 is used to initialize uint64 pointers in struct literals.
func Uint64(i uint64) *uint64 {
return &i
}
// Duration is used to initialize time.Duration pointers in struct literals.
func Duration(d time.Duration) *time.Duration {
return &d
}
// UnixSocketPermissions contains information about a unix socket, and
// implements the FilePermissions interface.
type UnixSocketPermissions struct {
Usr string `mapstructure:"user"`
Grp string `mapstructure:"group"`
Perms string `mapstructure:"mode"`
}
func (u UnixSocketPermissions) User() string {
return u.Usr
}
func (u UnixSocketPermissions) Group() string {
return u.Grp
}
func (u UnixSocketPermissions) Mode() string {
return u.Perms
}
func (s *Telemetry) GoString() string {
return fmt.Sprintf("*%#v", *s)
}
// UnixSocketConfig stores information about various unix sockets which
// Consul creates and uses for communication.
type UnixSocketConfig struct {
UnixSocketPermissions `mapstructure:",squash"`
}
// socketPath tests if a given address describes a domain socket,
// and returns the relevant path part of the string if it is.
func socketPath(addr string) string {
if !strings.HasPrefix(addr, "unix://") {
return ""
}
return strings.TrimPrefix(addr, "unix://")
}
type dirEnts []os.FileInfo
// DefaultConfig is used to return a sane default configuration
func DefaultConfig() *Config {
return &Config{
Limits: Limits{
RPCRate: rate.Inf,
RPCMaxBurst: 1000,
},
Bootstrap: false,
BootstrapExpect: 0,
Server: false,
Datacenter: consul.DefaultDC,
Domain: "consul.",
LogLevel: "INFO",
ClientAddr: "127.0.0.1",
BindAddr: "0.0.0.0",
Ports: PortConfig{
DNS: 8600,
HTTP: 8500,
HTTPS: -1,
SerfLan: consul.DefaultLANSerfPort,
SerfWan: consul.DefaultWANSerfPort,
Server: 8300,
},
DNSConfig: DNSConfig{
AllowStale: Bool(true),
UDPAnswerLimit: 3,
MaxStale: 10 * 365 * 24 * time.Hour,
RecursorTimeout: 2 * time.Second,
},
Telemetry: Telemetry{
StatsitePrefix: "consul",
FilterDefault: Bool(true),
},
Meta: make(map[string]string),
SyslogFacility: "LOCAL0",
Protocol: consul.ProtocolVersion2Compatible,
CheckUpdateInterval: 5 * time.Minute,
CheckDeregisterIntervalMin: time.Minute,
CheckReapInterval: 30 * time.Second,
AEInterval: time.Minute,
DisableCoordinates: false,
// SyncCoordinateRateTarget is set based on the rate that we want
// the server to handle as an aggregate across the entire cluster.
// If you update this, you'll need to adjust CoordinateUpdate* in
// the server-side config accordingly.
SyncCoordinateRateTarget: 64.0, // updates / second
SyncCoordinateIntervalMin: 15 * time.Second,
ACLTTL: 30 * time.Second,
ACLDownPolicy: "extend-cache",
ACLDefaultPolicy: "allow",
ACLDisabledTTL: 120 * time.Second,
ACLEnforceVersion8: Bool(true),
DisableRemoteExec: Bool(true),
RetryInterval: 30 * time.Second,
RetryIntervalWan: 30 * time.Second,
TLSMinVersion: "tls10",
EncryptVerifyIncoming: Bool(true),
EncryptVerifyOutgoing: Bool(true),
DisableHostNodeID: Bool(true),
}
}
// DevConfig is used to return a set of configuration to use for dev mode.
func DevConfig() *Config {
conf := DefaultConfig()
conf.DevMode = true
conf.LogLevel = "DEBUG"
conf.Server = true
conf.EnableDebug = true
conf.DisableAnonymousSignature = true
conf.EnableUI = true
conf.BindAddr = "127.0.0.1"
conf.DisableKeyringFile = true
conf.ConsulConfig = consul.DefaultConfig()
conf.ConsulConfig.SerfLANConfig.MemberlistConfig.ProbeTimeout = 100 * time.Millisecond
conf.ConsulConfig.SerfLANConfig.MemberlistConfig.ProbeInterval = 100 * time.Millisecond
conf.ConsulConfig.SerfLANConfig.MemberlistConfig.GossipInterval = 100 * time.Millisecond
conf.ConsulConfig.SerfWANConfig.MemberlistConfig.SuspicionMult = 3
conf.ConsulConfig.SerfWANConfig.MemberlistConfig.ProbeTimeout = 100 * time.Millisecond
conf.ConsulConfig.SerfWANConfig.MemberlistConfig.ProbeInterval = 100 * time.Millisecond
conf.ConsulConfig.SerfWANConfig.MemberlistConfig.GossipInterval = 100 * time.Millisecond
conf.ConsulConfig.RaftConfig.LeaderLeaseTimeout = 20 * time.Millisecond
conf.ConsulConfig.RaftConfig.HeartbeatTimeout = 40 * time.Millisecond
conf.ConsulConfig.RaftConfig.ElectionTimeout = 40 * time.Millisecond
conf.ConsulConfig.CoordinateUpdatePeriod = 100 * time.Millisecond
return conf
}
// EncryptBytes returns the encryption key configured.
func (c *Config) EncryptBytes() ([]byte, error) {
return base64.StdEncoding.DecodeString(c.EncryptKey)
}
// ClientListener is used to format a listener for a
// port on a ClientAddr
func (c *Config) ClientListener(override string, port int) (net.Addr, error) {
addr := c.ClientAddr
if override != "" {
addr = override
}
if path := socketPath(addr); path != "" {
return &net.UnixAddr{Name: path, Net: "unix"}, nil
}
ip := net.ParseIP(addr)
if ip == nil {
return nil, fmt.Errorf("Failed to parse IP: %v", addr)
}
return &net.TCPAddr{IP: ip, Port: port}, nil
}
// VerifyUniqueListeners checks to see if an address was used more than once in
// the config
func (c *Config) VerifyUniqueListeners() error {
listeners := []struct {
host string
port int
descr string
}{
{c.Addresses.DNS, c.Ports.DNS, "DNS"},
{c.Addresses.HTTP, c.Ports.HTTP, "HTTP"},
{c.Addresses.HTTPS, c.Ports.HTTPS, "HTTPS"},
{c.AdvertiseAddr, c.Ports.Server, "Server RPC"},
{c.AdvertiseAddr, c.Ports.SerfLan, "Serf LAN"},
{c.AdvertiseAddr, c.Ports.SerfWan, "Serf WAN"},
}
type key struct {
host string
port int
}
m := make(map[key]string, len(listeners))
for _, l := range listeners {
if l.host == "" {
l.host = "0.0.0.0"
} else if strings.HasPrefix(l.host, "unix") {
// Don't compare ports on unix sockets
l.port = 0
}
if l.host == "0.0.0.0" && l.port <= 0 {
continue
}
k := key{l.host, l.port}
v, ok := m[k]
if ok {
return fmt.Errorf("%s address already configured for %s", l.descr, v)
}
m[k] = l.descr
}
return nil
}
// DecodeConfig reads the configuration from the given reader in JSON
// format and decodes it into a proper Config structure.
func DecodeConfig(r io.Reader) (*Config, error) {
var raw interface{}
if err := json.NewDecoder(r).Decode(&raw); err != nil {
return nil, err
}
// Check the result type
var result Config
if obj, ok := raw.(map[string]interface{}); ok {
// Check for a "services", "service" or "check" key, meaning
// this is actually a definition entry
if sub, ok := obj["services"]; ok {
if list, ok := sub.([]interface{}); ok {
for _, srv := range list {
service, err := DecodeServiceDefinition(srv)
if err != nil {
return nil, err
}
result.Services = append(result.Services, service)
}
}
}
if sub, ok := obj["service"]; ok {
service, err := DecodeServiceDefinition(sub)
if err != nil {
return nil, err
}
result.Services = append(result.Services, service)
}
if sub, ok := obj["checks"]; ok {
if list, ok := sub.([]interface{}); ok {
for _, chk := range list {
check, err := DecodeCheckDefinition(chk)
if err != nil {
return nil, err
}
result.Checks = append(result.Checks, check)
}
}
}
if sub, ok := obj["check"]; ok {
check, err := DecodeCheckDefinition(sub)
if err != nil {
return nil, err
}
result.Checks = append(result.Checks, check)
}
// A little hacky but upgrades the old stats config directives to the new way
if sub, ok := obj["statsd_addr"]; ok && result.Telemetry.StatsdAddr == "" {
result.Telemetry.StatsdAddr = sub.(string)
}
if sub, ok := obj["statsite_addr"]; ok && result.Telemetry.StatsiteAddr == "" {
result.Telemetry.StatsiteAddr = sub.(string)
}
if sub, ok := obj["statsite_prefix"]; ok && result.Telemetry.StatsitePrefix == "" {
result.Telemetry.StatsitePrefix = sub.(string)
}
if sub, ok := obj["dogstatsd_addr"]; ok && result.Telemetry.DogStatsdAddr == "" {
result.Telemetry.DogStatsdAddr = sub.(string)
}
if sub, ok := obj["dogstatsd_tags"].([]interface{}); ok && len(result.Telemetry.DogStatsdTags) == 0 {
result.Telemetry.DogStatsdTags = make([]string, len(sub))
for i := range sub {
result.Telemetry.DogStatsdTags[i] = sub[i].(string)
}
}
}
// Decode
var md mapstructure.Metadata
msdec, err := mapstructure.NewDecoder(&mapstructure.DecoderConfig{
Metadata: &md,
Result: &result,
})
if err != nil {
return nil, err
}
if err := msdec.Decode(raw); err != nil {
return nil, err
}
// Check for deprecations
if result.Ports.RPC != 0 {
fmt.Fprintln(os.Stderr, "==> DEPRECATION: ports.rpc is deprecated and is "+
"no longer used. Please remove it from your configuration.")
}
if result.Addresses.RPC != "" {
fmt.Fprintln(os.Stderr, "==> DEPRECATION: addresses.rpc is deprecated and "+
"is no longer used. Please remove it from your configuration.")
}
if result.DeprecatedAtlasInfrastructure != "" {
fmt.Fprintln(os.Stderr, "==> DEPRECATION: atlas_infrastructure is deprecated and "+
"is no longer used. Please remove it from your configuration.")
}
if result.DeprecatedAtlasToken != "" {
fmt.Fprintln(os.Stderr, "==> DEPRECATION: atlas_token is deprecated and "+
"is no longer used. Please remove it from your configuration.")
}
if result.DeprecatedAtlasACLToken != "" {
fmt.Fprintln(os.Stderr, "==> DEPRECATION: atlas_acl_token is deprecated and "+
"is no longer used. Please remove it from your configuration.")
}
if result.DeprecatedAtlasJoin != false {
fmt.Fprintln(os.Stderr, "==> DEPRECATION: atlas_join is deprecated and "+
"is no longer used. Please remove it from your configuration.")
}
if result.DeprecatedAtlasEndpoint != "" {
fmt.Fprintln(os.Stderr, "==> DEPRECATION: atlas_endpoint is deprecated and "+
"is no longer used. Please remove it from your configuration.")
}
// Check unused fields and verify that no bad configuration options were
// passed to Consul. There are a few additional fields which don't directly
// use mapstructure decoding, so we need to account for those as well. These
// telemetry-related fields used to be available as top-level keys, so they
// are here for backward compatibility with the old format.
allowedKeys := []string{
"service", "services", "check", "checks", "statsd_addr", "statsite_addr", "statsite_prefix",
"dogstatsd_addr", "dogstatsd_tags",
}
var unused []string
for _, field := range md.Unused {
if !lib.StrContains(allowedKeys, field) {
unused = append(unused, field)
}
}
if len(unused) > 0 {
return nil, fmt.Errorf("Config has invalid keys: %s", strings.Join(unused, ","))
}
// Handle time conversions
if raw := result.DNSConfig.NodeTTLRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("NodeTTL invalid: %v", err)
}
result.DNSConfig.NodeTTL = dur
}
if raw := result.DNSConfig.MaxStaleRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("MaxStale invalid: %v", err)
}
result.DNSConfig.MaxStale = dur
}
if raw := result.DNSConfig.RecursorTimeoutRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("RecursorTimeout invalid: %v", err)
}
result.DNSConfig.RecursorTimeout = dur
}
if len(result.DNSConfig.ServiceTTLRaw) != 0 {
if result.DNSConfig.ServiceTTL == nil {
result.DNSConfig.ServiceTTL = make(map[string]time.Duration)
}
for service, raw := range result.DNSConfig.ServiceTTLRaw {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("ServiceTTL %s invalid: %v", service, err)
}
result.DNSConfig.ServiceTTL[service] = dur
}
}
if raw := result.CheckUpdateIntervalRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("CheckUpdateInterval invalid: %v", err)
}
result.CheckUpdateInterval = dur
}
if raw := result.ACLTTLRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("ACL TTL invalid: %v", err)
}
result.ACLTTL = dur
}
if raw := result.RetryIntervalRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("RetryInterval invalid: %v", err)
}
result.RetryInterval = dur
}
if raw := result.RetryIntervalWanRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("RetryIntervalWan invalid: %v", err)
}
result.RetryIntervalWan = dur
}
const reconnectTimeoutMin = 8 * time.Hour
if raw := result.ReconnectTimeoutLanRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("ReconnectTimeoutLan invalid: %v", err)
}
if dur < reconnectTimeoutMin {
return nil, fmt.Errorf("ReconnectTimeoutLan must be >= %s", reconnectTimeoutMin.String())
}
result.ReconnectTimeoutLan = dur
}
if raw := result.ReconnectTimeoutWanRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("ReconnectTimeoutWan invalid: %v", err)
}
if dur < reconnectTimeoutMin {
return nil, fmt.Errorf("ReconnectTimeoutWan must be >= %s", reconnectTimeoutMin.String())
}
result.ReconnectTimeoutWan = dur
}
if raw := result.Autopilot.LastContactThresholdRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("LastContactThreshold invalid: %v", err)
}
result.Autopilot.LastContactThreshold = &dur
}
if raw := result.Autopilot.ServerStabilizationTimeRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("ServerStabilizationTime invalid: %v", err)
}
result.Autopilot.ServerStabilizationTime = &dur
}
// Merge the single recursor
if result.DNSRecursor != "" {
result.DNSRecursors = append(result.DNSRecursors, result.DNSRecursor)
}
if raw := result.SessionTTLMinRaw; raw != "" {
dur, err := time.ParseDuration(raw)
if err != nil {
return nil, fmt.Errorf("Session TTL Min invalid: %v", err)
}
result.SessionTTLMin = dur
}
if result.AdvertiseAddrs.SerfLanRaw != "" {
ipStr, err := parseSingleIPTemplate(result.AdvertiseAddrs.SerfLanRaw)
if err != nil {
return nil, fmt.Errorf("Serf Advertise LAN address resolution failed: %v", err)
}
result.AdvertiseAddrs.SerfLanRaw = ipStr
addr, err := net.ResolveTCPAddr("tcp", result.AdvertiseAddrs.SerfLanRaw)
if err != nil {
return nil, fmt.Errorf("AdvertiseAddrs.SerfLan is invalid: %v", err)
}
result.AdvertiseAddrs.SerfLan = addr
}
if result.AdvertiseAddrs.SerfWanRaw != "" {
ipStr, err := parseSingleIPTemplate(result.AdvertiseAddrs.SerfWanRaw)
if err != nil {
return nil, fmt.Errorf("Serf Advertise WAN address resolution failed: %v", err)
}
result.AdvertiseAddrs.SerfWanRaw = ipStr
addr, err := net.ResolveTCPAddr("tcp", result.AdvertiseAddrs.SerfWanRaw)
if err != nil {
return nil, fmt.Errorf("AdvertiseAddrs.SerfWan is invalid: %v", err)
}
result.AdvertiseAddrs.SerfWan = addr
}
if result.AdvertiseAddrs.RPCRaw != "" {
ipStr, err := parseSingleIPTemplate(result.AdvertiseAddrs.RPCRaw)
if err != nil {
return nil, fmt.Errorf("RPC Advertise address resolution failed: %v", err)
}
result.AdvertiseAddrs.RPCRaw = ipStr
addr, err := net.ResolveTCPAddr("tcp", result.AdvertiseAddrs.RPCRaw)
if err != nil {
return nil, fmt.Errorf("AdvertiseAddrs.RPC is invalid: %v", err)
}
result.AdvertiseAddrs.RPC = addr
}
// Validate segment config.
if err := ValidateSegments(&result); err != nil {
return nil, err
}
// Enforce the max Raft multiplier.
if result.Performance.RaftMultiplier > consul.MaxRaftMultiplier {
return nil, fmt.Errorf("Performance.RaftMultiplier must be <= %d", consul.MaxRaftMultiplier)
}
if raw := result.TLSCipherSuitesRaw; raw != "" {
ciphers, err := tlsutil.ParseCiphers(raw)
if err != nil {
return nil, fmt.Errorf("TLSCipherSuites invalid: %v", err)
}
result.TLSCipherSuites = ciphers
}
// This is for backwards compatibility.
// HTTPAPIResponseHeaders has been replaced with HTTPConfig.ResponseHeaders
if len(result.DeprecatedHTTPAPIResponseHeaders) > 0 {
fmt.Fprintln(os.Stderr, "==> DEPRECATION: http_api_response_headers is deprecated and "+
"is no longer used. Please use http_config.response_headers instead.")
if result.HTTPConfig.ResponseHeaders == nil {
result.HTTPConfig.ResponseHeaders = make(map[string]string)
}
for field, value := range result.DeprecatedHTTPAPIResponseHeaders {
result.HTTPConfig.ResponseHeaders[field] = value
}
result.DeprecatedHTTPAPIResponseHeaders = nil
}
// Set the ACL replication enable if they set a token, for backwards
// compatibility.
if result.ACLReplicationToken != "" {
result.EnableACLReplication = true
}
// Parse the metric filters
for _, rule := range result.Telemetry.PrefixFilter {
if rule == "" {
return nil, fmt.Errorf("Cannot have empty filter rule in prefix_filter")
}
switch rule[0] {
case '+':
result.Telemetry.AllowedPrefixes = append(result.Telemetry.AllowedPrefixes, rule[1:])
case '-':
result.Telemetry.BlockedPrefixes = append(result.Telemetry.BlockedPrefixes, rule[1:])
default:
return nil, fmt.Errorf("Filter rule must begin with either '+' or '-': %q", rule)
}
}
// Validate node meta fields
if err := structs.ValidateMetadata(result.Meta, false); err != nil {
return nil, fmt.Errorf("Failed to parse node metadata: %v", err)
}
return &result, nil
}
// DecodeServiceDefinition is used to decode a service definition
func DecodeServiceDefinition(raw interface{}) (*structs.ServiceDefinition, error) {
rawMap, ok := raw.(map[string]interface{})
if !ok {
goto AFTER_FIX
}
// If no 'tags', handle the deprecated 'tag' value.
if _, ok := rawMap["tags"]; !ok {
if tag, ok := rawMap["tag"]; ok {
rawMap["tags"] = []interface{}{tag}
}
}
for k, v := range rawMap {
switch strings.ToLower(k) {
case "check":
if err := FixupCheckType(v); err != nil {
return nil, err
}
case "checks":
chkTypes, ok := v.([]interface{})
if !ok {
goto AFTER_FIX
}
for _, chkType := range chkTypes {
if err := FixupCheckType(chkType); err != nil {
return nil, err
}
}
}
}
AFTER_FIX:
var md mapstructure.Metadata
var result structs.ServiceDefinition
msdec, err := mapstructure.NewDecoder(&mapstructure.DecoderConfig{
Metadata: &md,
Result: &result,
})
if err != nil {
return nil, err
}
if err := msdec.Decode(raw); err != nil {
return nil, err
}
return &result, nil
}
var errInvalidHeaderFormat = errors.New("agent: invalid format of 'header' field")
func FixupCheckType(raw interface{}) error {
rawMap, ok := raw.(map[string]interface{})
if !ok {
return nil
}
parseDuration := func(v interface{}) (time.Duration, error) {
if v == nil {
return 0, nil
}
switch x := v.(type) {
case time.Duration:
return x, nil
case float64:
return time.Duration(x), nil
case string:
return time.ParseDuration(x)
default:
return 0, fmt.Errorf("invalid format")
}
}
parseHeaderMap := func(v interface{}) (map[string][]string, error) {
if v == nil {
return nil, nil
}
vm, ok := v.(map[string]interface{})
if !ok {
return nil, errInvalidHeaderFormat
}
m := map[string][]string{}
for k, vv := range vm {
vs, ok := vv.([]interface{})
if !ok {
return nil, errInvalidHeaderFormat
}
for _, vs := range vs {
s, ok := vs.(string)
if !ok {
return nil, errInvalidHeaderFormat
}
m[k] = append(m[k], s)
}
}
return m, nil
}
replace := func(oldKey, newKey string, val interface{}) {
rawMap[newKey] = val
if oldKey != newKey {
delete(rawMap, oldKey)
}
}
for k, v := range rawMap {
switch strings.ToLower(k) {
case "header":
h, err := parseHeaderMap(v)
if err != nil {
return fmt.Errorf("invalid %q: %s", k, err)
}
rawMap[k] = h
case "ttl", "interval", "timeout":
d, err := parseDuration(v)
if err != nil {
return fmt.Errorf("invalid %q: %v", k, err)
}
rawMap[k] = d
case "deregister_critical_service_after", "deregistercriticalserviceafter":
d, err := parseDuration(v)
if err != nil {
return fmt.Errorf("invalid %q: %v", k, err)
}
replace(k, "DeregisterCriticalServiceAfter", d)
case "docker_container_id":
replace(k, "DockerContainerID", v)
case "service_id":
replace(k, "ServiceID", v)
case "tls_skip_verify":
replace(k, "TLSSkipVerify", v)
}
}
return nil
}
// DecodeCheckDefinition is used to decode a check definition
func DecodeCheckDefinition(raw interface{}) (*structs.CheckDefinition, error) {
if err := FixupCheckType(raw); err != nil {
return nil, err
}
var md mapstructure.Metadata
var result structs.CheckDefinition
msdec, err := mapstructure.NewDecoder(&mapstructure.DecoderConfig{
Metadata: &md,
Result: &result,
})
if err != nil {
return nil, err
}
if err := msdec.Decode(raw); err != nil {
return nil, err
}
return &result, nil
}
// MergeConfig merges two configurations together to make a single new
// configuration.
func MergeConfig(a, b *Config) *Config {
var result Config = *a
if b.Limits.RPCRate > 0 {
result.Limits.RPCRate = b.Limits.RPCRate
}
if b.Limits.RPCMaxBurst > 0 {
result.Limits.RPCMaxBurst = b.Limits.RPCMaxBurst
}
// Propagate non-default performance settings
if b.Performance.RaftMultiplier > 0 {
result.Performance.RaftMultiplier = b.Performance.RaftMultiplier
}
// Copy the strings if they're set
if b.Bootstrap {
result.Bootstrap = true
}
if b.BootstrapExpect != 0 {
result.BootstrapExpect = b.BootstrapExpect
}
if b.Datacenter != "" {
result.Datacenter = b.Datacenter
}
if b.DataDir != "" {
result.DataDir = b.DataDir
}
// Copy the dns recursors
result.DNSRecursors = make([]string, 0, len(a.DNSRecursors)+len(b.DNSRecursors))
result.DNSRecursors = append(result.DNSRecursors, a.DNSRecursors...)
result.DNSRecursors = append(result.DNSRecursors, b.DNSRecursors...)
if b.Domain != "" {
result.Domain = b.Domain
}
if b.EncryptKey != "" {
result.EncryptKey = b.EncryptKey
}
if b.DisableKeyringFile {
result.DisableKeyringFile = true
}
if b.EncryptVerifyIncoming != nil {
result.EncryptVerifyIncoming = b.EncryptVerifyIncoming
}
if b.EncryptVerifyOutgoing != nil {
result.EncryptVerifyOutgoing = b.EncryptVerifyOutgoing
}
if b.LogLevel != "" {
result.LogLevel = b.LogLevel
}
if b.Protocol > 0 {
result.Protocol = b.Protocol
}
if b.RaftProtocol > 0 {
result.RaftProtocol = b.RaftProtocol
}
if b.NodeID != "" {
result.NodeID = b.NodeID
}
if b.DisableHostNodeID != nil {
result.DisableHostNodeID = b.DisableHostNodeID
}
if b.NodeName != "" {
result.NodeName = b.NodeName
}
if b.ClientAddr != "" {
result.ClientAddr = b.ClientAddr
}
if b.BindAddr != "" {
result.BindAddr = b.BindAddr
}
if b.AdvertiseAddr != "" {
result.AdvertiseAddr = b.AdvertiseAddr
}
if b.AdvertiseAddrWan != "" {
result.AdvertiseAddrWan = b.AdvertiseAddrWan
}
if b.SerfWanBindAddr != "" {
result.SerfWanBindAddr = b.SerfWanBindAddr
}
if b.SerfLanBindAddr != "" {
result.SerfLanBindAddr = b.SerfLanBindAddr
}
if b.TranslateWanAddrs == true {
result.TranslateWanAddrs = true
}
if b.AdvertiseAddrs.SerfLan != nil {
result.AdvertiseAddrs.SerfLan = b.AdvertiseAddrs.SerfLan
result.AdvertiseAddrs.SerfLanRaw = b.AdvertiseAddrs.SerfLanRaw
}
if b.AdvertiseAddrs.SerfWan != nil {
result.AdvertiseAddrs.SerfWan = b.AdvertiseAddrs.SerfWan
result.AdvertiseAddrs.SerfWanRaw = b.AdvertiseAddrs.SerfWanRaw
}
if b.AdvertiseAddrs.RPC != nil {
result.AdvertiseAddrs.RPC = b.AdvertiseAddrs.RPC
result.AdvertiseAddrs.RPCRaw = b.AdvertiseAddrs.RPCRaw
}
if b.Server == true {
result.Server = b.Server
}
if b.NonVotingServer == true {
result.NonVotingServer = b.NonVotingServer
}
if b.LeaveOnTerm != nil {
result.LeaveOnTerm = b.LeaveOnTerm
}
if b.SkipLeaveOnInt != nil {
result.SkipLeaveOnInt = b.SkipLeaveOnInt
}
if b.Autopilot.CleanupDeadServers != nil {
result.Autopilot.CleanupDeadServers = b.Autopilot.CleanupDeadServers
}
if b.Autopilot.LastContactThreshold != nil {
result.Autopilot.LastContactThreshold = b.Autopilot.LastContactThreshold
}
if b.Autopilot.MaxTrailingLogs != nil {
result.Autopilot.MaxTrailingLogs = b.Autopilot.MaxTrailingLogs
}
if b.Autopilot.ServerStabilizationTime != nil {
result.Autopilot.ServerStabilizationTime = b.Autopilot.ServerStabilizationTime
}
if b.Autopilot.RedundancyZoneTag != "" {
result.Autopilot.RedundancyZoneTag = b.Autopilot.RedundancyZoneTag
}
if b.Autopilot.DisableUpgradeMigration != nil {
result.Autopilot.DisableUpgradeMigration = b.Autopilot.DisableUpgradeMigration
}
if b.Autopilot.UpgradeVersionTag != "" {
result.Autopilot.UpgradeVersionTag = b.Autopilot.UpgradeVersionTag
}
if b.Telemetry.DisableHostname == true {
result.Telemetry.DisableHostname = true
}
if len(b.Telemetry.PrefixFilter) != 0 {
result.Telemetry.PrefixFilter = append(result.Telemetry.PrefixFilter, b.Telemetry.PrefixFilter...)
}
if b.Telemetry.FilterDefault != nil {
result.Telemetry.FilterDefault = b.Telemetry.FilterDefault
}
if b.Telemetry.StatsdAddr != "" {
result.Telemetry.StatsdAddr = b.Telemetry.StatsdAddr
}
if b.Telemetry.StatsiteAddr != "" {
result.Telemetry.StatsiteAddr = b.Telemetry.StatsiteAddr
}
if b.Telemetry.StatsitePrefix != "" {
result.Telemetry.StatsitePrefix = b.Telemetry.StatsitePrefix
}
if b.Telemetry.DogStatsdAddr != "" {
result.Telemetry.DogStatsdAddr = b.Telemetry.DogStatsdAddr
}
if b.Telemetry.DogStatsdTags != nil {
result.Telemetry.DogStatsdTags = b.Telemetry.DogStatsdTags
}
if b.Telemetry.CirconusAPIToken != "" {
result.Telemetry.CirconusAPIToken = b.Telemetry.CirconusAPIToken
}
if b.Telemetry.CirconusAPIApp != "" {
result.Telemetry.CirconusAPIApp = b.Telemetry.CirconusAPIApp
}
if b.Telemetry.CirconusAPIURL != "" {
result.Telemetry.CirconusAPIURL = b.Telemetry.CirconusAPIURL
}
if b.Telemetry.CirconusCheckSubmissionURL != "" {
result.Telemetry.CirconusCheckSubmissionURL = b.Telemetry.CirconusCheckSubmissionURL
}
if b.Telemetry.CirconusSubmissionInterval != "" {
result.Telemetry.CirconusSubmissionInterval = b.Telemetry.CirconusSubmissionInterval
}
if b.Telemetry.CirconusCheckID != "" {
result.Telemetry.CirconusCheckID = b.Telemetry.CirconusCheckID
}
if b.Telemetry.CirconusCheckForceMetricActivation != "" {
result.Telemetry.CirconusCheckForceMetricActivation = b.Telemetry.CirconusCheckForceMetricActivation
}
if b.Telemetry.CirconusCheckInstanceID != "" {
result.Telemetry.CirconusCheckInstanceID = b.Telemetry.CirconusCheckInstanceID
}
if b.Telemetry.CirconusCheckSearchTag != "" {
result.Telemetry.CirconusCheckSearchTag = b.Telemetry.CirconusCheckSearchTag
}
if b.Telemetry.CirconusCheckDisplayName != "" {
result.Telemetry.CirconusCheckDisplayName = b.Telemetry.CirconusCheckDisplayName
}
if b.Telemetry.CirconusCheckTags != "" {
result.Telemetry.CirconusCheckTags = b.Telemetry.CirconusCheckTags
}
if b.Telemetry.CirconusBrokerID != "" {
result.Telemetry.CirconusBrokerID = b.Telemetry.CirconusBrokerID
}
if b.Telemetry.CirconusBrokerSelectTag != "" {
result.Telemetry.CirconusBrokerSelectTag = b.Telemetry.CirconusBrokerSelectTag
}
if b.EnableDebug {
result.EnableDebug = true
}
if b.VerifyIncoming {
result.VerifyIncoming = true
}
if b.VerifyIncomingRPC {
result.VerifyIncomingRPC = true
}
if b.VerifyIncomingHTTPS {
result.VerifyIncomingHTTPS = true
}
if b.VerifyOutgoing {
result.VerifyOutgoing = true
}
if b.VerifyServerHostname {
result.VerifyServerHostname = true
}
if b.CAFile != "" {
result.CAFile = b.CAFile
}
if b.CAPath != "" {
result.CAPath = b.CAPath
}
if b.CertFile != "" {
result.CertFile = b.CertFile
}
if b.KeyFile != "" {
result.KeyFile = b.KeyFile
}
if b.ServerName != "" {
result.ServerName = b.ServerName
}
if b.TLSMinVersion != "" {
result.TLSMinVersion = b.TLSMinVersion
}
if len(b.TLSCipherSuites) != 0 {
result.TLSCipherSuites = append(result.TLSCipherSuites, b.TLSCipherSuites...)
}
if b.TLSPreferServerCipherSuites {
result.TLSPreferServerCipherSuites = true
}
if b.Checks != nil {
result.Checks = append(result.Checks, b.Checks...)
}
if b.Services != nil {
result.Services = append(result.Services, b.Services...)
}
if b.Ports.DNS != 0 {
result.Ports.DNS = b.Ports.DNS
}
if b.Ports.HTTP != 0 {
result.Ports.HTTP = b.Ports.HTTP
}
if b.Ports.HTTPS != 0 {
result.Ports.HTTPS = b.Ports.HTTPS
}
if b.Ports.RPC != 0 {
result.Ports.RPC = b.Ports.RPC
}
if b.Ports.SerfLan != 0 {
result.Ports.SerfLan = b.Ports.SerfLan
}
if b.Ports.SerfWan != 0 {
result.Ports.SerfWan = b.Ports.SerfWan
}
if b.Ports.Server != 0 {
result.Ports.Server = b.Ports.Server
}
if b.Addresses.DNS != "" {
result.Addresses.DNS = b.Addresses.DNS
}
if b.Addresses.HTTP != "" {
result.Addresses.HTTP = b.Addresses.HTTP
}
if b.Addresses.HTTPS != "" {
result.Addresses.HTTPS = b.Addresses.HTTPS
}
if b.Addresses.RPC != "" {
result.Addresses.RPC = b.Addresses.RPC
}
if b.Segment != "" {
result.Segment = b.Segment
}
if len(b.Segments) > 0 {
result.Segments = append(result.Segments, b.Segments...)
}
if b.EnableUI {
result.EnableUI = true
}
if b.UIDir != "" {
result.UIDir = b.UIDir
}
if b.PidFile != "" {
result.PidFile = b.PidFile
}
if b.EnableSyslog {
result.EnableSyslog = true
}
if b.RejoinAfterLeave {
result.RejoinAfterLeave = true
}
if b.RetryMaxAttempts != 0 {
result.RetryMaxAttempts = b.RetryMaxAttempts
}
if b.RetryInterval != 0 {
result.RetryInterval = b.RetryInterval
}
if b.DeprecatedRetryJoinEC2.AccessKeyID != "" {
result.DeprecatedRetryJoinEC2.AccessKeyID = b.DeprecatedRetryJoinEC2.AccessKeyID
}
if b.DeprecatedRetryJoinEC2.SecretAccessKey != "" {
result.DeprecatedRetryJoinEC2.SecretAccessKey = b.DeprecatedRetryJoinEC2.SecretAccessKey
}
if b.DeprecatedRetryJoinEC2.Region != "" {
result.DeprecatedRetryJoinEC2.Region = b.DeprecatedRetryJoinEC2.Region
}
if b.DeprecatedRetryJoinEC2.TagKey != "" {
result.DeprecatedRetryJoinEC2.TagKey = b.DeprecatedRetryJoinEC2.TagKey
}
if b.DeprecatedRetryJoinEC2.TagValue != "" {
result.DeprecatedRetryJoinEC2.TagValue = b.DeprecatedRetryJoinEC2.TagValue
}
if b.DeprecatedRetryJoinGCE.ProjectName != "" {
result.DeprecatedRetryJoinGCE.ProjectName = b.DeprecatedRetryJoinGCE.ProjectName
}
if b.DeprecatedRetryJoinGCE.ZonePattern != "" {
result.DeprecatedRetryJoinGCE.ZonePattern = b.DeprecatedRetryJoinGCE.ZonePattern
}
if b.DeprecatedRetryJoinGCE.TagValue != "" {
result.DeprecatedRetryJoinGCE.TagValue = b.DeprecatedRetryJoinGCE.TagValue
}
if b.DeprecatedRetryJoinGCE.CredentialsFile != "" {
result.DeprecatedRetryJoinGCE.CredentialsFile = b.DeprecatedRetryJoinGCE.CredentialsFile
}
if b.DeprecatedRetryJoinAzure.TagName != "" {
result.DeprecatedRetryJoinAzure.TagName = b.DeprecatedRetryJoinAzure.TagName
}
if b.DeprecatedRetryJoinAzure.TagValue != "" {
result.DeprecatedRetryJoinAzure.TagValue = b.DeprecatedRetryJoinAzure.TagValue
}
if b.DeprecatedRetryJoinAzure.SubscriptionID != "" {
result.DeprecatedRetryJoinAzure.SubscriptionID = b.DeprecatedRetryJoinAzure.SubscriptionID
}
if b.DeprecatedRetryJoinAzure.TenantID != "" {
result.DeprecatedRetryJoinAzure.TenantID = b.DeprecatedRetryJoinAzure.TenantID
}
if b.DeprecatedRetryJoinAzure.ClientID != "" {
result.DeprecatedRetryJoinAzure.ClientID = b.DeprecatedRetryJoinAzure.ClientID
}
if b.DeprecatedRetryJoinAzure.SecretAccessKey != "" {
result.DeprecatedRetryJoinAzure.SecretAccessKey = b.DeprecatedRetryJoinAzure.SecretAccessKey
}
if b.RetryMaxAttemptsWan != 0 {
result.RetryMaxAttemptsWan = b.RetryMaxAttemptsWan
}
if b.RetryIntervalWan != 0 {
result.RetryIntervalWan = b.RetryIntervalWan
}
if b.ReconnectTimeoutLan != 0 {
result.ReconnectTimeoutLan = b.ReconnectTimeoutLan
result.ReconnectTimeoutLanRaw = b.ReconnectTimeoutLanRaw
}
if b.ReconnectTimeoutWan != 0 {
result.ReconnectTimeoutWan = b.ReconnectTimeoutWan
result.ReconnectTimeoutWanRaw = b.ReconnectTimeoutWanRaw
}
if b.DNSConfig.NodeTTL != 0 {
result.DNSConfig.NodeTTL = b.DNSConfig.NodeTTL
}
if len(b.DNSConfig.ServiceTTL) != 0 {
if result.DNSConfig.ServiceTTL == nil {
result.DNSConfig.ServiceTTL = make(map[string]time.Duration)
}
for service, dur := range b.DNSConfig.ServiceTTL {
result.DNSConfig.ServiceTTL[service] = dur
}
}
if b.DNSConfig.AllowStale != nil {
result.DNSConfig.AllowStale = b.DNSConfig.AllowStale
}
if b.DNSConfig.UDPAnswerLimit != 0 {
result.DNSConfig.UDPAnswerLimit = b.DNSConfig.UDPAnswerLimit
}
if b.DNSConfig.EnableTruncate {
result.DNSConfig.EnableTruncate = true
}
if b.DNSConfig.MaxStale != 0 {
result.DNSConfig.MaxStale = b.DNSConfig.MaxStale
}
if b.DNSConfig.OnlyPassing {
result.DNSConfig.OnlyPassing = true
}
if b.DNSConfig.DisableCompression {
result.DNSConfig.DisableCompression = true
}
if b.DNSConfig.RecursorTimeout != 0 {
result.DNSConfig.RecursorTimeout = b.DNSConfig.RecursorTimeout
}
if b.EnableScriptChecks {
result.EnableScriptChecks = true
}
if b.CheckUpdateIntervalRaw != "" || b.CheckUpdateInterval != 0 {
result.CheckUpdateInterval = b.CheckUpdateInterval
}
if b.SyslogFacility != "" {
result.SyslogFacility = b.SyslogFacility
}
if b.ACLToken != "" {
result.ACLToken = b.ACLToken
}
if b.ACLAgentMasterToken != "" {
result.ACLAgentMasterToken = b.ACLAgentMasterToken
}
if b.ACLAgentToken != "" {
result.ACLAgentToken = b.ACLAgentToken
}
if b.ACLMasterToken != "" {
result.ACLMasterToken = b.ACLMasterToken
}
if b.ACLDatacenter != "" {
result.ACLDatacenter = b.ACLDatacenter
}
if b.ACLTTLRaw != "" {
result.ACLTTL = b.ACLTTL
result.ACLTTLRaw = b.ACLTTLRaw
}
if b.ACLDownPolicy != "" {
result.ACLDownPolicy = b.ACLDownPolicy
}
if b.ACLDefaultPolicy != "" {
result.ACLDefaultPolicy = b.ACLDefaultPolicy
}
if b.EnableACLReplication {
result.EnableACLReplication = true
}
if b.ACLReplicationToken != "" {
result.ACLReplicationToken = b.ACLReplicationToken
}
if b.ACLEnforceVersion8 != nil {
result.ACLEnforceVersion8 = b.ACLEnforceVersion8
}
if len(b.Watches) != 0 {
result.Watches = append(result.Watches, b.Watches...)
}
if len(b.WatchPlans) != 0 {
result.WatchPlans = append(result.WatchPlans, b.WatchPlans...)
}
if b.DisableRemoteExec != nil {
result.DisableRemoteExec = b.DisableRemoteExec
}
if b.DisableUpdateCheck {
result.DisableUpdateCheck = true
}
if b.DisableAnonymousSignature {
result.DisableAnonymousSignature = true
}
if b.UnixSockets.Usr != "" {
result.UnixSockets.Usr = b.UnixSockets.Usr
}
if b.UnixSockets.Grp != "" {
result.UnixSockets.Grp = b.UnixSockets.Grp
}
if b.UnixSockets.Perms != "" {
result.UnixSockets.Perms = b.UnixSockets.Perms
}
if b.DisableCoordinates {
result.DisableCoordinates = true
}
if b.SessionTTLMinRaw != "" {
result.SessionTTLMin = b.SessionTTLMin
result.SessionTTLMinRaw = b.SessionTTLMinRaw
}
result.HTTPConfig.BlockEndpoints = append(a.HTTPConfig.BlockEndpoints,
b.HTTPConfig.BlockEndpoints...)
if len(b.HTTPConfig.ResponseHeaders) > 0 {
if result.HTTPConfig.ResponseHeaders == nil {
result.HTTPConfig.ResponseHeaders = make(map[string]string)
}
for field, value := range b.HTTPConfig.ResponseHeaders {
result.HTTPConfig.ResponseHeaders[field] = value
}
}
if len(b.Meta) != 0 {
if result.Meta == nil {
result.Meta = make(map[string]string)
}
for field, value := range b.Meta {
result.Meta[field] = value
}
}
// Copy the start join addresses
result.StartJoin = make([]string, 0, len(a.StartJoin)+len(b.StartJoin))
result.StartJoin = append(result.StartJoin, a.StartJoin...)
result.StartJoin = append(result.StartJoin, b.StartJoin...)
// Copy the start join addresses
result.StartJoinWan = make([]string, 0, len(a.StartJoinWan)+len(b.StartJoinWan))
result.StartJoinWan = append(result.StartJoinWan, a.StartJoinWan...)
result.StartJoinWan = append(result.StartJoinWan, b.StartJoinWan...)
// Copy the retry join addresses
result.RetryJoin = make([]string, 0, len(a.RetryJoin)+len(b.RetryJoin))
result.RetryJoin = append(result.RetryJoin, a.RetryJoin...)
result.RetryJoin = append(result.RetryJoin, b.RetryJoin...)
// Copy the retry join -wan addresses
result.RetryJoinWan = make([]string, 0, len(a.RetryJoinWan)+len(b.RetryJoinWan))
result.RetryJoinWan = append(result.RetryJoinWan, a.RetryJoinWan...)
result.RetryJoinWan = append(result.RetryJoinWan, b.RetryJoinWan...)
return &result
}
// ReadConfigPaths reads the paths in the given order to load configurations.
// The paths can be to files or directories. If the path is a directory,
// we read one directory deep and read any files ending in ".json" as
// configuration files.
func ReadConfigPaths(paths []string) (*Config, error) {
result := new(Config)
for _, path := range paths {
f, err := os.Open(path)
if err != nil {
return nil, fmt.Errorf("Error reading '%s': %s", path, err)
}
fi, err := f.Stat()
if err != nil {
f.Close()
return nil, fmt.Errorf("Error reading '%s': %s", path, err)
}
if !fi.IsDir() {
config, err := DecodeConfig(f)
f.Close()
if err != nil {
return nil, fmt.Errorf("Error decoding '%s': %s", path, err)
}
result = MergeConfig(result, config)
continue
}
contents, err := f.Readdir(-1)
f.Close()
if err != nil {
return nil, fmt.Errorf("Error reading '%s': %s", path, err)
}
// Sort the contents, ensures lexical order
sort.Sort(dirEnts(contents))
for _, fi := range contents {
// Don't recursively read contents
if fi.IsDir() {
continue
}
// If it isn't a JSON file, ignore it
if !strings.HasSuffix(fi.Name(), ".json") {
continue
}
// If the config file is empty, ignore it
if fi.Size() == 0 {
continue
}
subpath := filepath.Join(path, fi.Name())
f, err := os.Open(subpath)
if err != nil {
return nil, fmt.Errorf("Error reading '%s': %s", subpath, err)
}
config, err := DecodeConfig(f)
f.Close()
if err != nil {
return nil, fmt.Errorf("Error decoding '%s': %s", subpath, err)
}
result = MergeConfig(result, config)
}
}
return result, nil
}
// ResolveTmplAddrs iterates over the myriad of addresses in the agent's config
// and performs go-sockaddr/template Parse on each known address in case the
// user specified a template config for any of their values.
func (c *Config) ResolveTmplAddrs() (err error) {
parse := func(addr *string, socketAllowed bool, name string) {
if *addr == "" || err != nil {
return
}
var ip string
ip, err = parseSingleIPTemplate(*addr)
if err != nil {
err = fmt.Errorf("Resolution of %s failed: %v", name, err)
return
}
ipAddr := net.ParseIP(ip)
if !socketAllowed && ipAddr == nil {
err = fmt.Errorf("Failed to parse %s: %v", name, ip)
return
}
if socketAllowed && socketPath(ip) == "" && ipAddr == nil {
err = fmt.Errorf("Failed to parse %s, %q is not a valid IP address or socket", name, ip)
return
}
*addr = ip
}
if c == nil {
return
}
parse(&c.Addresses.DNS, true, "DNS address")
parse(&c.Addresses.HTTP, true, "HTTP address")
parse(&c.Addresses.HTTPS, true, "HTTPS address")
parse(&c.AdvertiseAddr, false, "Advertise address")
parse(&c.AdvertiseAddrWan, false, "Advertise WAN address")
parse(&c.BindAddr, true, "Bind address")
parse(&c.ClientAddr, true, "Client address")
parse(&c.SerfLanBindAddr, false, "Serf LAN address")
parse(&c.SerfWanBindAddr, false, "Serf WAN address")
for i, segment := range c.Segments {
parse(&c.Segments[i].Bind, false, fmt.Sprintf("Segment %q bind address", segment.Name))
parse(&c.Segments[i].Advertise, false, fmt.Sprintf("Segment %q advertise address", segment.Name))
}
return
}
// SetupTaggedAndAdvertiseAddrs configures advertise addresses and sets up a map of tagged addresses
func (cfg *Config) SetupTaggedAndAdvertiseAddrs() error {
if cfg.AdvertiseAddr == "" {
switch {
case cfg.BindAddr != "" && !ipaddr.IsAny(cfg.BindAddr):
cfg.AdvertiseAddr = cfg.BindAddr
default:
ip, err := consul.GetPrivateIP()
if ipaddr.IsAnyV6(cfg.BindAddr) {
ip, err = consul.GetPublicIPv6()
}
if err != nil {
return fmt.Errorf("Failed to get advertise address: %v", err)
}
cfg.AdvertiseAddr = ip.String()
}
}
// Try to get an advertise address for the wan
if cfg.AdvertiseAddrWan == "" {
cfg.AdvertiseAddrWan = cfg.AdvertiseAddr
}
// Create the default set of tagged addresses.
cfg.TaggedAddresses = map[string]string{
"lan": cfg.AdvertiseAddr,
"wan": cfg.AdvertiseAddrWan,
}
return nil
}
// parseSingleIPTemplate is used as a helper function to parse out a single IP
// address from a config parameter.
func parseSingleIPTemplate(ipTmpl string) (string, error) {
out, err := template.Parse(ipTmpl)
if err != nil {
return "", fmt.Errorf("Unable to parse address template %q: %v", ipTmpl, err)
}
ips := strings.Split(out, " ")
switch len(ips) {
case 0:
return "", errors.New("No addresses found, please configure one.")
case 1:
return ips[0], nil
default:
return "", fmt.Errorf("Multiple addresses found (%q), please configure one.", out)
}
}
// Implement the sort interface for dirEnts
func (d dirEnts) Len() int {
return len(d)
}
func (d dirEnts) Less(i, j int) bool {
return d[i].Name() < d[j].Name()
}
func (d dirEnts) Swap(i, j int) {
d[i], d[j] = d[j], d[i]
}
// ParseMetaPair parses a key/value pair of the form key:value
func ParseMetaPair(raw string) (string, string) {
pair := strings.SplitN(raw, ":", 2)
if len(pair) == 2 {
return pair[0], pair[1]
}
return pair[0], ""
}