mirror of
https://github.com/status-im/consul.git
synced 2025-01-24 20:51:10 +00:00
240 lines
6.8 KiB
Go
240 lines
6.8 KiB
Go
// Package cache provides caching features for data from a Consul server.
|
|
//
|
|
// While this is similar in some ways to the "agent/ae" package, a key
|
|
// difference is that with anti-entropy, the agent is the authoritative
|
|
// source so it resolves differences the server may have. With caching (this
|
|
// package), the server is the authoritative source and we do our best to
|
|
// balance performance and correctness, depending on the type of data being
|
|
// requested.
|
|
//
|
|
// Currently, the cache package supports only continuous, blocking query
|
|
// caching. This means that the cache update is edge-triggered by Consul
|
|
// server blocking queries.
|
|
package cache
|
|
|
|
import (
|
|
"fmt"
|
|
"sync"
|
|
"time"
|
|
)
|
|
|
|
//go:generate mockery -all -inpkg
|
|
|
|
// Pre-written options for type registration. These should not be modified.
|
|
var (
|
|
// RegisterOptsPeriodic performs a periodic refresh of data fetched
|
|
// by the registered type.
|
|
RegisterOptsPeriodic = &RegisterOptions{
|
|
Refresh: true,
|
|
RefreshTimer: 30 * time.Second,
|
|
RefreshTimeout: 5 * time.Minute,
|
|
}
|
|
)
|
|
|
|
// TODO: DC-aware
|
|
|
|
// RPC is an interface that an RPC client must implement.
|
|
type RPC interface {
|
|
RPC(method string, args interface{}, reply interface{}) error
|
|
}
|
|
|
|
// Cache is a agent-local cache of Consul data.
|
|
type Cache struct {
|
|
// rpcClient is the RPC-client.
|
|
rpcClient RPC
|
|
|
|
entriesLock sync.RWMutex
|
|
entries map[string]cacheEntry
|
|
|
|
typesLock sync.RWMutex
|
|
types map[string]typeEntry
|
|
}
|
|
|
|
type cacheEntry struct {
|
|
// Fields pertaining to the actual value
|
|
Value interface{}
|
|
Error error
|
|
Index uint64
|
|
|
|
// Metadata that is used for internal accounting
|
|
Valid bool
|
|
Fetching bool
|
|
Waiter chan struct{}
|
|
}
|
|
|
|
// typeEntry is a single type that is registered with a Cache.
|
|
type typeEntry struct {
|
|
Type Type
|
|
Opts *RegisterOptions
|
|
}
|
|
|
|
// New creates a new cache with the given RPC client and reasonable defaults.
|
|
// Further settings can be tweaked on the returned value.
|
|
func New(rpc RPC) *Cache {
|
|
return &Cache{
|
|
rpcClient: rpc,
|
|
entries: make(map[string]cacheEntry),
|
|
types: make(map[string]typeEntry),
|
|
}
|
|
}
|
|
|
|
// RegisterOptions are options that can be associated with a type being
|
|
// registered for the cache. This changes the behavior of the cache for
|
|
// this type.
|
|
type RegisterOptions struct {
|
|
// Refresh configures whether the data is actively refreshed or if
|
|
// the data is only refreshed on an explicit Get. The default (false)
|
|
// is to only request data on explicit Get.
|
|
Refresh bool
|
|
|
|
// RefreshTimer is the time between attempting to refresh data.
|
|
// If this is zero, then data is refreshed immediately when a fetch
|
|
// is returned.
|
|
//
|
|
// RefreshTimeout determines the maximum query time for a refresh
|
|
// operation. This is specified as part of the query options and is
|
|
// expected to be implemented by the Type itself.
|
|
//
|
|
// Using these values, various "refresh" mechanisms can be implemented:
|
|
//
|
|
// * With a high timer duration and a low timeout, a timer-based
|
|
// refresh can be set that minimizes load on the Consul servers.
|
|
//
|
|
// * With a low timer and high timeout duration, a blocking-query-based
|
|
// refresh can be set so that changes in server data are recognized
|
|
// within the cache very quickly.
|
|
//
|
|
RefreshTimer time.Duration
|
|
RefreshTimeout time.Duration
|
|
}
|
|
|
|
// RegisterType registers a cacheable type.
|
|
func (c *Cache) RegisterType(n string, typ Type, opts *RegisterOptions) {
|
|
c.typesLock.Lock()
|
|
defer c.typesLock.Unlock()
|
|
c.types[n] = typeEntry{Type: typ, Opts: opts}
|
|
}
|
|
|
|
// Get loads the data for the given type and request. If data satisfying the
|
|
// minimum index is present in the cache, it is returned immediately. Otherwise,
|
|
// this will block until the data is available or the request timeout is
|
|
// reached.
|
|
//
|
|
// Multiple Get calls for the same Request (matching CacheKey value) will
|
|
// block on a single network request.
|
|
func (c *Cache) Get(t string, r Request) (interface{}, error) {
|
|
key := r.CacheKey()
|
|
idx := r.CacheMinIndex()
|
|
|
|
RETRY_GET:
|
|
// Get the current value
|
|
c.entriesLock.RLock()
|
|
entry, ok := c.entries[key]
|
|
c.entriesLock.RUnlock()
|
|
|
|
// If we have a current value and the index is greater than the
|
|
// currently stored index then we return that right away. If the
|
|
// index is zero and we have something in the cache we accept whatever
|
|
// we have.
|
|
if ok && entry.Valid && (idx == 0 || idx < entry.Index) {
|
|
return entry.Value, nil
|
|
}
|
|
|
|
// At this point, we know we either don't have a value at all or the
|
|
// value we have is too old. We need to wait for new data.
|
|
waiter, err := c.fetch(t, r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Wait on our waiter and then retry the cache load
|
|
<-waiter
|
|
goto RETRY_GET
|
|
}
|
|
|
|
func (c *Cache) fetch(t string, r Request) (<-chan struct{}, error) {
|
|
// Get the type that we're fetching
|
|
c.typesLock.RLock()
|
|
tEntry, ok := c.types[t]
|
|
c.typesLock.RUnlock()
|
|
if !ok {
|
|
return nil, fmt.Errorf("unknown type in cache: %s", t)
|
|
}
|
|
|
|
// The cache key is used multiple times and might be dynamically
|
|
// constructed so let's just store it once here.
|
|
key := r.CacheKey()
|
|
|
|
c.entriesLock.Lock()
|
|
defer c.entriesLock.Unlock()
|
|
entry, ok := c.entries[key]
|
|
|
|
// If we already have an entry and it is actively fetching, then return
|
|
// the currently active waiter.
|
|
if ok && entry.Fetching {
|
|
return entry.Waiter, nil
|
|
}
|
|
|
|
// If we don't have an entry, then create it. The entry must be marked
|
|
// as invalid so that it isn't returned as a valid value for a zero index.
|
|
if !ok {
|
|
entry = cacheEntry{Valid: false, Waiter: make(chan struct{})}
|
|
}
|
|
|
|
// Set that we're fetching to true, which makes it so that future
|
|
// identical calls to fetch will return the same waiter rather than
|
|
// perform multiple fetches.
|
|
entry.Fetching = true
|
|
c.entries[key] = entry
|
|
|
|
// The actual Fetch must be performed in a goroutine.
|
|
go func() {
|
|
// Start building the new entry by blocking on the fetch.
|
|
var newEntry cacheEntry
|
|
result, err := tEntry.Type.Fetch(FetchOptions{
|
|
RPC: c.rpcClient,
|
|
MinIndex: entry.Index,
|
|
}, r)
|
|
newEntry.Value = result.Value
|
|
newEntry.Index = result.Index
|
|
newEntry.Error = err
|
|
|
|
// This is a valid entry with a result
|
|
newEntry.Valid = true
|
|
|
|
// Create a new waiter that will be used for the next fetch.
|
|
newEntry.Waiter = make(chan struct{})
|
|
|
|
// Insert
|
|
c.entriesLock.Lock()
|
|
c.entries[key] = newEntry
|
|
c.entriesLock.Unlock()
|
|
|
|
// Trigger the waiter
|
|
close(entry.Waiter)
|
|
|
|
// If refresh is enabled, run the refresh in due time. The refresh
|
|
// below might block, but saves us from spawning another goroutine.
|
|
if tEntry.Opts != nil && tEntry.Opts.Refresh {
|
|
c.refresh(tEntry.Opts, t, r)
|
|
}
|
|
}()
|
|
|
|
return entry.Waiter, nil
|
|
}
|
|
|
|
func (c *Cache) refresh(opts *RegisterOptions, t string, r Request) {
|
|
// Sanity-check, we should not schedule anything that has refresh disabled
|
|
if !opts.Refresh {
|
|
return
|
|
}
|
|
|
|
// If we have a timer, wait for it
|
|
if opts.RefreshTimer > 0 {
|
|
time.Sleep(opts.RefreshTimer)
|
|
}
|
|
|
|
// Trigger
|
|
c.fetch(t, r)
|
|
}
|