consul/agent/cache/entry.go
Paul Banks 0638e09b6e
connect: agent leaf cert caching improvements (#5091)
* Add State storage and LastResult argument into Cache so that cache.Types can safely store additional data that is eventually expired.

* New Leaf cache type working and basic tests passing. TODO: more extensive testing for the Root change jitter across blocking requests, test concurrent fetches for different leaves interact nicely with rootsWatcher.

* Add multi-client and delayed rotation tests.

* Typos and cleanup error handling in roots watch

* Add comment about how the FetchResult can be used and change ca leaf state to use a non-pointer state.

* Plumb test override of root CA jitter through TestAgent so that tests are deterministic again!

* Fix failing config test
2019-01-10 12:46:11 +00:00

161 lines
5.4 KiB
Go

package cache
import (
"container/heap"
"time"
)
// cacheEntry stores a single cache entry.
//
// Note that this isn't a very optimized structure currently. There are
// a lot of improvements that can be made here in the long term.
type cacheEntry struct {
// Fields pertaining to the actual value
Value interface{}
// State can be used to store info needed by the cache type but that should
// not be part of the result the client gets. For example the Connect Leaf
// type needs to store additional data about when it last attempted a renewal
// that is not part of the actual IssuedCert struct it returns. It's opaque to
// the Cache but allows types to store additional data that is coupled to the
// cache entry's lifetime and will be aged out by TTL etc.
State interface{}
Error error
Index uint64
// Metadata that is used for internal accounting
Valid bool // True if the Value is set
Fetching bool // True if a fetch is already active
Waiter chan struct{} // Closed when this entry is invalidated
// Expiry contains information about the expiration of this
// entry. This is a pointer as its shared as a value in the
// expiryHeap as well.
Expiry *cacheEntryExpiry
// FetchedAt stores the time the cache entry was retrieved for determining
// it's age later.
FetchedAt time.Time
// RefreshLostContact stores the time background refresh failed. It gets reset
// to zero after a background fetch has returned successfully, or after a
// background request has be blocking for at least 5 seconds, which ever
// happens first.
RefreshLostContact time.Time
}
// cacheEntryExpiry contains the expiration information for a cache
// entry. Any modifications to this struct should be done only while
// the Cache entriesLock is held.
type cacheEntryExpiry struct {
Key string // Key in the cache map
Expires time.Time // Time when entry expires (monotonic clock)
TTL time.Duration // TTL for this entry to extend when resetting
HeapIndex int // Index in the heap
}
// Reset resets the expiration to be the ttl duration from now.
func (e *cacheEntryExpiry) Reset() {
e.Expires = time.Now().Add(e.TTL)
}
// expiryHeap is a heap implementation that stores information about
// when entires expire. Implements container/heap.Interface.
//
// All operations on the heap and read/write of the heap contents require
// the proper entriesLock to be held on Cache.
type expiryHeap struct {
Entries []*cacheEntryExpiry
// NotifyCh is sent a value whenever the 0 index value of the heap
// changes. This can be used to detect when the earliest value
// changes.
//
// There is a single edge case where the heap will not automatically
// send a notification: if heap.Fix is called manually and the index
// changed is 0 and the change doesn't result in any moves (stays at index
// 0), then we won't detect the change. To work around this, please
// always call the expiryHeap.Fix method instead.
NotifyCh chan struct{}
}
// Identical to heap.Fix for this heap instance but will properly handle
// the edge case where idx == 0 and no heap modification is necessary,
// and still notify the NotifyCh.
//
// This is important for cache expiry since the expiry time may have been
// extended and if we don't send a message to the NotifyCh then we'll never
// reset the timer and the entry will be evicted early.
func (h *expiryHeap) Fix(entry *cacheEntryExpiry) {
idx := entry.HeapIndex
heap.Fix(h, idx)
// This is the edge case we handle: if the prev (idx) and current (HeapIndex)
// is zero, it means the head-of-line didn't change while the value
// changed. Notify to reset our expiry worker.
if idx == 0 && entry.HeapIndex == 0 {
h.notify()
}
}
func (h *expiryHeap) Len() int { return len(h.Entries) }
func (h *expiryHeap) Swap(i, j int) {
h.Entries[i], h.Entries[j] = h.Entries[j], h.Entries[i]
h.Entries[i].HeapIndex = i
h.Entries[j].HeapIndex = j
// If we're moving the 0 index, update the channel since we need
// to re-update the timer we're waiting on for the soonest expiring
// value.
if i == 0 || j == 0 {
h.notify()
}
}
func (h *expiryHeap) Less(i, j int) bool {
// The usage of Before here is important (despite being obvious):
// this function uses the monotonic time that should be available
// on the time.Time value so the heap is immune to wall clock changes.
return h.Entries[i].Expires.Before(h.Entries[j].Expires)
}
// heap.Interface, this isn't expected to be called directly.
func (h *expiryHeap) Push(x interface{}) {
entry := x.(*cacheEntryExpiry)
// Set initial heap index, if we're going to the end then Swap
// won't be called so we need to initialize
entry.HeapIndex = len(h.Entries)
// For the first entry, we need to trigger a channel send because
// Swap won't be called; nothing to swap! We can call it right away
// because all heap operations are within a lock.
if len(h.Entries) == 0 {
h.notify()
}
h.Entries = append(h.Entries, entry)
}
// heap.Interface, this isn't expected to be called directly.
func (h *expiryHeap) Pop() interface{} {
old := h.Entries
n := len(old)
x := old[n-1]
h.Entries = old[0 : n-1]
return x
}
func (h *expiryHeap) notify() {
select {
case h.NotifyCh <- struct{}{}:
// Good
default:
// If the send would've blocked, we just ignore it. The reason this
// is safe is because NotifyCh should always be a buffered channel.
// If this blocks, it means that there is a pending message anyways
// so the receiver will restart regardless.
}
}