package checks import ( "bufio" "context" "crypto/tls" "errors" "fmt" "io" "io/ioutil" "net" "net/http" "os" osexec "os/exec" "strings" "sync" "syscall" "time" http2 "golang.org/x/net/http2" "github.com/hashicorp/consul/agent/structs" "github.com/hashicorp/go-hclog" "github.com/armon/circbuf" "github.com/hashicorp/consul/agent/exec" "github.com/hashicorp/consul/api" "github.com/hashicorp/consul/lib" "github.com/hashicorp/go-cleanhttp" ) const ( // MinInterval is the minimal interval between // two checks. Do not allow for a interval below this value. // Otherwise we risk fork bombing a system. MinInterval = time.Second // DefaultBufSize is the maximum size of the captured // check output by default. Prevents an enormous buffer // from being captured DefaultBufSize = 4 * 1024 // 4KB // UserAgent is the value of the User-Agent header // for HTTP health checks. UserAgent = "Consul Health Check" ) // RPC is an interface that an RPC client must implement. This is a helper // interface that is implemented by the agent delegate for checks that need // to make RPC calls. type RPC interface { RPC(method string, args interface{}, reply interface{}) error } // CheckNotifier interface is used by the CheckMonitor // to notify when a check has a status update. The update // should take care to be idempotent. type CheckNotifier interface { UpdateCheck(checkID structs.CheckID, status, output string) // ServiceExists return true if the given service does exists ServiceExists(serviceID structs.ServiceID) bool } // CheckMonitor is used to periodically invoke a script to // determine the health of a given check. It is compatible with // nagios plugins and expects the output in the same format. // Supports failures_before_critical and success_before_passing. type CheckMonitor struct { Notify CheckNotifier CheckID structs.CheckID ServiceID structs.ServiceID Script string ScriptArgs []string Interval time.Duration Timeout time.Duration Logger hclog.Logger OutputMaxSize int StatusHandler *StatusHandler stop bool stopCh chan struct{} stopLock sync.Mutex } // Start is used to start a check monitor. // Monitor runs until stop is called func (c *CheckMonitor) Start() { c.stopLock.Lock() defer c.stopLock.Unlock() c.stop = false c.stopCh = make(chan struct{}) go c.run() } // Stop is used to stop a check monitor. func (c *CheckMonitor) Stop() { c.stopLock.Lock() defer c.stopLock.Unlock() if !c.stop { c.stop = true close(c.stopCh) } } // run is invoked by a goroutine to run until Stop() is called func (c *CheckMonitor) run() { // Get the randomized initial pause time initialPauseTime := lib.RandomStagger(c.Interval) next := time.After(initialPauseTime) for { select { case <-next: c.check() next = time.After(c.Interval) case <-c.stopCh: return } } } // check is invoked periodically to perform the script check func (c *CheckMonitor) check() { // Create the command var cmd *osexec.Cmd var err error if len(c.ScriptArgs) > 0 { cmd, err = exec.Subprocess(c.ScriptArgs) } else { cmd, err = exec.Script(c.Script) } if err != nil { c.Logger.Error("Check failed to setup", "check", c.CheckID.String(), "error", err, ) c.Notify.UpdateCheck(c.CheckID, api.HealthCritical, err.Error()) return } // Collect the output output, _ := circbuf.NewBuffer(int64(c.OutputMaxSize)) cmd.Stdout = output cmd.Stderr = output exec.SetSysProcAttr(cmd) truncateAndLogOutput := func() string { outputStr := string(output.Bytes()) if output.TotalWritten() > output.Size() { outputStr = fmt.Sprintf("Captured %d of %d bytes\n...\n%s", output.Size(), output.TotalWritten(), outputStr) } c.Logger.Trace("Check output", "check", c.CheckID.String(), "output", outputStr, ) return outputStr } // Start the check if err := cmd.Start(); err != nil { c.Logger.Error("Check failed to invoke", "check", c.CheckID.String(), "error", err, ) c.Notify.UpdateCheck(c.CheckID, api.HealthCritical, err.Error()) return } // Wait for the check to complete waitCh := make(chan error, 1) go func() { waitCh <- cmd.Wait() }() timeout := 30 * time.Second if c.Timeout > 0 { timeout = c.Timeout } select { case <-time.After(timeout): if err := exec.KillCommandSubtree(cmd); err != nil { c.Logger.Warn("Check failed to kill after timeout", "check", c.CheckID.String(), "error", err, ) } msg := fmt.Sprintf("Timed out (%s) running check", timeout.String()) c.Logger.Warn("Timed out running check", "check", c.CheckID.String(), "timeout", timeout.String(), ) outputStr := truncateAndLogOutput() if len(outputStr) > 0 { msg += "\n\n" + outputStr } c.Notify.UpdateCheck(c.CheckID, api.HealthCritical, msg) // Now wait for the process to exit so we never start another // instance concurrently. <-waitCh return case err = <-waitCh: // The process returned before the timeout, proceed normally } // Check if the check passed outputStr := truncateAndLogOutput() if err == nil { c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, outputStr) return } // If the exit code is 1, set check as warning exitErr, ok := err.(*osexec.ExitError) if ok { if status, ok := exitErr.Sys().(syscall.WaitStatus); ok { code := status.ExitStatus() if code == 1 { c.StatusHandler.updateCheck(c.CheckID, api.HealthWarning, outputStr) return } } } // Set the health as critical c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, outputStr) } // CheckTTL is used to apply a TTL to check status, // and enables clients to set the status of a check // but upon the TTL expiring, the check status is // automatically set to critical. type CheckTTL struct { Notify CheckNotifier CheckID structs.CheckID ServiceID structs.ServiceID TTL time.Duration Logger hclog.Logger timer *time.Timer lastOutput string lastOutputLock sync.RWMutex stop bool stopCh chan struct{} stopLock sync.Mutex OutputMaxSize int } // Start is used to start a check ttl, runs until Stop() func (c *CheckTTL) Start() { c.stopLock.Lock() defer c.stopLock.Unlock() if c.OutputMaxSize < 1 { c.OutputMaxSize = DefaultBufSize } c.stop = false c.stopCh = make(chan struct{}) c.timer = time.NewTimer(c.TTL) go c.run() } // Stop is used to stop a check ttl. func (c *CheckTTL) Stop() { c.stopLock.Lock() defer c.stopLock.Unlock() if !c.stop { c.timer.Stop() c.stop = true close(c.stopCh) } } // run is used to handle TTL expiration and to update the check status func (c *CheckTTL) run() { for { select { case <-c.timer.C: c.Logger.Warn("Check missed TTL, is now critical", "check", c.CheckID.String(), ) c.Notify.UpdateCheck(c.CheckID, api.HealthCritical, c.getExpiredOutput()) case <-c.stopCh: return } } } // getExpiredOutput formats the output for the case when the TTL is expired. func (c *CheckTTL) getExpiredOutput() string { c.lastOutputLock.RLock() defer c.lastOutputLock.RUnlock() const prefix = "TTL expired" if c.lastOutput == "" { return prefix } return fmt.Sprintf("%s (last output before timeout follows): %s", prefix, c.lastOutput) } // SetStatus is used to update the status of the check, // and to renew the TTL. If expired, TTL is restarted. // output is returned (might be truncated) func (c *CheckTTL) SetStatus(status, output string) string { c.Logger.Debug("Check status updated", "check", c.CheckID.String(), "status", status, ) total := len(output) if total > c.OutputMaxSize { output = fmt.Sprintf("%s ... (captured %d of %d bytes)", output[:c.OutputMaxSize], c.OutputMaxSize, total) } c.Notify.UpdateCheck(c.CheckID, status, output) // Store the last output so we can retain it if the TTL expires. c.lastOutputLock.Lock() c.lastOutput = output c.lastOutputLock.Unlock() c.timer.Reset(c.TTL) return output } // CheckHTTP is used to periodically make an HTTP request to // determine the health of a given check. // The check is passing if the response code is 2XX. // The check is warning if the response code is 429. // The check is critical if the response code is anything else // or if the request returns an error // Supports failures_before_critical and success_before_passing. type CheckHTTP struct { CheckID structs.CheckID ServiceID structs.ServiceID HTTP string Header map[string][]string Method string Body string Interval time.Duration Timeout time.Duration Logger hclog.Logger TLSClientConfig *tls.Config OutputMaxSize int StatusHandler *StatusHandler DisableRedirects bool httpClient *http.Client stop bool stopCh chan struct{} stopLock sync.Mutex stopWg sync.WaitGroup // Set if checks are exposed through Connect proxies // If set, this is the target of check() ProxyHTTP string } func (c *CheckHTTP) CheckType() structs.CheckType { return structs.CheckType{ CheckID: c.CheckID.ID, HTTP: c.HTTP, Method: c.Method, Body: c.Body, Header: c.Header, Interval: c.Interval, ProxyHTTP: c.ProxyHTTP, Timeout: c.Timeout, OutputMaxSize: c.OutputMaxSize, } } // Start is used to start an HTTP check. // The check runs until stop is called func (c *CheckHTTP) Start() { c.stopLock.Lock() defer c.stopLock.Unlock() if c.httpClient == nil { // Create the transport. We disable HTTP Keep-Alive's to prevent // failing checks due to the keepalive interval. trans := cleanhttp.DefaultTransport() trans.DisableKeepAlives = true // Take on the supplied TLS client config. trans.TLSClientConfig = c.TLSClientConfig // Create the HTTP client. c.httpClient = &http.Client{ Timeout: 10 * time.Second, Transport: trans, } if c.DisableRedirects { c.httpClient.CheckRedirect = func(req *http.Request, via []*http.Request) error { return http.ErrUseLastResponse } } if c.Timeout > 0 { c.httpClient.Timeout = c.Timeout } if c.OutputMaxSize < 1 { c.OutputMaxSize = DefaultBufSize } } c.stop = false c.stopCh = make(chan struct{}) c.stopWg.Add(1) go c.run() } // Stop is used to stop an HTTP check. func (c *CheckHTTP) Stop() { c.stopLock.Lock() defer c.stopLock.Unlock() if !c.stop { c.stop = true close(c.stopCh) } // Wait for the c.run() goroutine to complete before returning. c.stopWg.Wait() } // run is invoked by a goroutine to run until Stop() is called func (c *CheckHTTP) run() { defer c.stopWg.Done() // Get the randomized initial pause time initialPauseTime := lib.RandomStagger(c.Interval) next := time.After(initialPauseTime) for { select { case <-next: c.check() next = time.After(c.Interval) case <-c.stopCh: return } } } // check is invoked periodically to perform the HTTP check func (c *CheckHTTP) check() { method := c.Method if method == "" { method = "GET" } target := c.HTTP if c.ProxyHTTP != "" { target = c.ProxyHTTP } bodyReader := strings.NewReader(c.Body) req, err := http.NewRequest(method, target, bodyReader) if err != nil { c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error()) return } req.Header = http.Header(c.Header) // this happens during testing but not in prod if req.Header == nil { req.Header = make(http.Header) } if host := req.Header.Get("Host"); host != "" { req.Host = host } if req.Header.Get("User-Agent") == "" { req.Header.Set("User-Agent", UserAgent) } if req.Header.Get("Accept") == "" { req.Header.Set("Accept", "text/plain, text/*, */*") } resp, err := c.httpClient.Do(req) if err != nil { c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error()) return } defer resp.Body.Close() // Read the response into a circular buffer to limit the size output, _ := circbuf.NewBuffer(int64(c.OutputMaxSize)) if _, err := io.Copy(output, resp.Body); err != nil { c.Logger.Warn("Check error while reading body", "check", c.CheckID.String(), "error", err, ) } // Format the response body result := fmt.Sprintf("HTTP %s %s: %s Output: %s", method, target, resp.Status, output.String()) if resp.StatusCode >= 200 && resp.StatusCode <= 299 { // PASSING (2xx) c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, result) } else if resp.StatusCode == 429 { // WARNING // 429 Too Many Requests (RFC 6585) // The user has sent too many requests in a given amount of time. c.StatusHandler.updateCheck(c.CheckID, api.HealthWarning, result) } else { // CRITICAL c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, result) } } type CheckH2PING struct { CheckID structs.CheckID ServiceID structs.ServiceID H2PING string Interval time.Duration Timeout time.Duration Logger hclog.Logger TLSClientConfig *tls.Config StatusHandler *StatusHandler stop bool stopCh chan struct{} stopLock sync.Mutex stopWg sync.WaitGroup } func shutdownHTTP2ClientConn(clientConn *http2.ClientConn, timeout time.Duration, checkIDString string, logger hclog.Logger) { ctx, cancel := context.WithTimeout(context.Background(), timeout/2) defer cancel() err := clientConn.Shutdown(ctx) if err != nil { logger.Warn("Shutdown of H2Ping check client connection gave an error", "check", checkIDString, "error", err) } } func (c *CheckH2PING) check() { t := &http2.Transport{} var dialFunc func(ctx context.Context, network, address string, tlscfg *tls.Config) (net.Conn, error) if c.TLSClientConfig != nil { t.TLSClientConfig = c.TLSClientConfig dialFunc = func(ctx context.Context, network, address string, tlscfg *tls.Config) (net.Conn, error) { dialer := &tls.Dialer{Config: tlscfg} return dialer.DialContext(ctx, network, address) } } else { t.AllowHTTP = true dialFunc = func(ctx context.Context, network, address string, tlscfg *tls.Config) (net.Conn, error) { dialer := &net.Dialer{} return dialer.DialContext(ctx, network, address) } } target := c.H2PING ctx, cancel := context.WithTimeout(context.Background(), c.Timeout) defer cancel() conn, err := dialFunc(ctx, "tcp", target, c.TLSClientConfig) if err != nil { message := fmt.Sprintf("Failed to dial to %s: %s", target, err) c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, message) return } defer conn.Close() clientConn, err := t.NewClientConn(conn) if err != nil { message := fmt.Sprintf("Failed to create client connection %s", err) c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, message) return } defer shutdownHTTP2ClientConn(clientConn, c.Timeout, c.CheckID.String(), c.Logger) err = clientConn.Ping(ctx) if err == nil { c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, "HTTP2 ping was successful") } else { message := fmt.Sprintf("HTTP2 ping failed: %s", err) c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, message) } } // Stop is used to stop an H2PING check. func (c *CheckH2PING) Stop() { c.stopLock.Lock() defer c.stopLock.Unlock() if !c.stop { c.stop = true close(c.stopCh) } c.stopWg.Wait() } func (c *CheckH2PING) run() { defer c.stopWg.Done() // Get the randomized initial pause time initialPauseTime := lib.RandomStagger(c.Interval) next := time.After(initialPauseTime) for { select { case <-next: c.check() next = time.After(c.Interval) case <-c.stopCh: return } } } func (c *CheckH2PING) Start() { c.stopLock.Lock() defer c.stopLock.Unlock() if c.Timeout <= 0 { c.Timeout = 10 * time.Second } c.stop = false c.stopCh = make(chan struct{}) c.stopWg.Add(1) go c.run() } // CheckTCP is used to periodically make an TCP/UDP connection to // determine the health of a given check. // The check is passing if the connection succeeds // The check is critical if the connection returns an error // Supports failures_before_critical and success_before_passing. type CheckTCP struct { CheckID structs.CheckID ServiceID structs.ServiceID TCP string Interval time.Duration Timeout time.Duration Logger hclog.Logger StatusHandler *StatusHandler dialer *net.Dialer stop bool stopCh chan struct{} stopLock sync.Mutex } // Start is used to start a TCP check. // The check runs until stop is called func (c *CheckTCP) Start() { c.stopLock.Lock() defer c.stopLock.Unlock() if c.dialer == nil { // Create the socket dialer c.dialer = &net.Dialer{ Timeout: 10 * time.Second, } if c.Timeout > 0 { c.dialer.Timeout = c.Timeout } } c.stop = false c.stopCh = make(chan struct{}) go c.run() } // Stop is used to stop a TCP check. func (c *CheckTCP) Stop() { c.stopLock.Lock() defer c.stopLock.Unlock() if !c.stop { c.stop = true close(c.stopCh) } } // run is invoked by a goroutine to run until Stop() is called func (c *CheckTCP) run() { // Get the randomized initial pause time initialPauseTime := lib.RandomStagger(c.Interval) next := time.After(initialPauseTime) for { select { case <-next: c.check() next = time.After(c.Interval) case <-c.stopCh: return } } } // check is invoked periodically to perform the TCP check func (c *CheckTCP) check() { conn, err := c.dialer.Dial(`tcp`, c.TCP) if err != nil { c.Logger.Warn("Check socket connection failed", "check", c.CheckID.String(), "error", err, ) c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error()) return } conn.Close() c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, fmt.Sprintf("TCP connect %s: Success", c.TCP)) } // CheckUDP is used to periodically send a UDP datagram to determine the health of a given check. // The check is passing if the connection succeeds, the response is bytes.Equal to the bytes passed // in or if the error returned is a timeout error // The check is critical if: the connection succeeds but the response is not equal to the bytes passed in, // the connection succeeds but the error returned is not a timeout error or the connection fails type CheckUDP struct { CheckID structs.CheckID ServiceID structs.ServiceID UDP string Message string Interval time.Duration Timeout time.Duration Logger hclog.Logger StatusHandler *StatusHandler dialer *net.Dialer stop bool stopCh chan struct{} stopLock sync.Mutex } func (c *CheckUDP) Start() { c.stopLock.Lock() defer c.stopLock.Unlock() if c.dialer == nil { // Create the socket dialer c.dialer = &net.Dialer{ Timeout: 10 * time.Second, } if c.Timeout > 0 { c.dialer.Timeout = c.Timeout } } c.stop = false c.stopCh = make(chan struct{}) go c.run() } func (c *CheckUDP) Stop() { c.stopLock.Lock() defer c.stopLock.Unlock() if !c.stop { c.stop = true close(c.stopCh) } } func (c *CheckUDP) run() { // Get the randomized initial pause time initialPauseTime := lib.RandomStagger(c.Interval) next := time.After(initialPauseTime) for { select { case <-next: c.check() next = time.After(c.Interval) case <-c.stopCh: return } } } func (c *CheckUDP) check() { conn, err := c.dialer.Dial(`udp`, c.UDP) if err != nil { if e, ok := err.(net.Error); ok && e.Timeout() { c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, fmt.Sprintf("UDP connect %s: Success", c.UDP)) return } else { c.Logger.Warn("Check socket connection failed", "check", c.CheckID.String(), "error", err, ) c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error()) return } } defer conn.Close() n, err := fmt.Fprintf(conn, c.Message) if err != nil { c.Logger.Warn("Check socket write failed", "check", c.CheckID.String(), "error", err, ) c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error()) return } if n != len(c.Message) { c.Logger.Warn("Check socket short write", "check", c.CheckID.String(), "error", err, ) c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error()) return } if err != nil { c.Logger.Warn("Check socket write failed", "check", c.CheckID.String(), "error", err, ) c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error()) return } _, err = bufio.NewReader(conn).Read(make([]byte, 1)) if err != nil { if strings.Contains(err.Error(), "i/o timeout") { c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, fmt.Sprintf("UDP connect %s: Success", c.UDP)) return } else { c.Logger.Warn("Check socket read failed", "check", c.CheckID.String(), "error", err, ) c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error()) return } } else if err == nil { c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, fmt.Sprintf("UDP connect %s: Success", c.UDP)) } } // CheckDocker is used to periodically invoke a script to // determine the health of an application running inside a // Docker Container. We assume that the script is compatible // with nagios plugins and expects the output in the same format. // Supports failures_before_critical and success_before_passing. type CheckDocker struct { CheckID structs.CheckID ServiceID structs.ServiceID Script string ScriptArgs []string DockerContainerID string Shell string Interval time.Duration Logger hclog.Logger Client *DockerClient StatusHandler *StatusHandler stop chan struct{} } func (c *CheckDocker) Start() { if c.stop != nil { panic("Docker check already started") } if c.Logger == nil { c.Logger = hclog.New(&hclog.LoggerOptions{Output: ioutil.Discard}) } if c.Shell == "" { c.Shell = os.Getenv("SHELL") if c.Shell == "" { c.Shell = "/bin/sh" } } c.stop = make(chan struct{}) go c.run() } func (c *CheckDocker) Stop() { if c.stop == nil { panic("Stop called before start") } close(c.stop) } func (c *CheckDocker) run() { defer c.Client.Close() firstWait := lib.RandomStagger(c.Interval) next := time.After(firstWait) for { select { case <-next: c.check() next = time.After(c.Interval) case <-c.stop: return } } } func (c *CheckDocker) check() { var out string status, b, err := c.doCheck() if err != nil { c.Logger.Debug("Check failed", "check", c.CheckID.String(), "error", err, ) out = err.Error() } else { // out is already limited to CheckBufSize since we're getting a // limited buffer. So we don't need to truncate it just report // that it was truncated. out = string(b.Bytes()) if int(b.TotalWritten()) > len(out) { out = fmt.Sprintf("Captured %d of %d bytes\n...\n%s", len(out), b.TotalWritten(), out) } c.Logger.Trace("Check output", "check", c.CheckID.String(), "output", out, ) } c.StatusHandler.updateCheck(c.CheckID, status, out) } func (c *CheckDocker) doCheck() (string, *circbuf.Buffer, error) { var cmd []string if len(c.ScriptArgs) > 0 { cmd = c.ScriptArgs } else { cmd = []string{c.Shell, "-c", c.Script} } execID, err := c.Client.CreateExec(c.DockerContainerID, cmd) if err != nil { return api.HealthCritical, nil, err } buf, err := c.Client.StartExec(c.DockerContainerID, execID) if err != nil { return api.HealthCritical, nil, err } exitCode, err := c.Client.InspectExec(c.DockerContainerID, execID) if err != nil { return api.HealthCritical, nil, err } switch exitCode { case 0: return api.HealthPassing, buf, nil case 1: c.Logger.Debug("Check failed", "check", c.CheckID.String(), "exit_code", exitCode, ) return api.HealthWarning, buf, nil default: c.Logger.Debug("Check failed", "check", c.CheckID.String(), "exit_code", exitCode, ) return api.HealthCritical, buf, nil } } // CheckGRPC is used to periodically send request to a gRPC server // application that implements gRPC health-checking protocol. // The check is passing if returned status is SERVING. // The check is critical if connection fails or returned status is // not SERVING. // Supports failures_before_critical and success_before_passing. type CheckGRPC struct { CheckID structs.CheckID ServiceID structs.ServiceID GRPC string Interval time.Duration Timeout time.Duration TLSClientConfig *tls.Config Logger hclog.Logger StatusHandler *StatusHandler probe *GrpcHealthProbe stop bool stopCh chan struct{} stopLock sync.Mutex // Set if checks are exposed through Connect proxies // If set, this is the target of check() ProxyGRPC string } func (c *CheckGRPC) CheckType() structs.CheckType { return structs.CheckType{ CheckID: c.CheckID.ID, GRPC: c.GRPC, ProxyGRPC: c.ProxyGRPC, Interval: c.Interval, Timeout: c.Timeout, } } func (c *CheckGRPC) Start() { c.stopLock.Lock() defer c.stopLock.Unlock() timeout := 10 * time.Second if c.Timeout > 0 { timeout = c.Timeout } c.probe = NewGrpcHealthProbe(c.GRPC, timeout, c.TLSClientConfig) c.stop = false c.stopCh = make(chan struct{}) go c.run() } func (c *CheckGRPC) run() { // Get the randomized initial pause time initialPauseTime := lib.RandomStagger(c.Interval) next := time.After(initialPauseTime) for { select { case <-next: c.check() next = time.After(c.Interval) case <-c.stopCh: return } } } func (c *CheckGRPC) check() { target := c.GRPC if c.ProxyGRPC != "" { target = c.ProxyGRPC } err := c.probe.Check(target) if err != nil { c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, err.Error()) } else { c.StatusHandler.updateCheck(c.CheckID, api.HealthPassing, fmt.Sprintf("gRPC check %s: success", target)) } } func (c *CheckGRPC) Stop() { c.stopLock.Lock() defer c.stopLock.Unlock() if !c.stop { c.stop = true close(c.stopCh) } } type CheckOSService struct { CheckID structs.CheckID ServiceID structs.ServiceID OSService string Interval time.Duration Timeout time.Duration Logger hclog.Logger StatusHandler *StatusHandler Client *OSServiceClient stop bool stopCh chan struct{} stopLock sync.Mutex stopWg sync.WaitGroup } func (c *CheckOSService) CheckType() structs.CheckType { return structs.CheckType{ CheckID: c.CheckID.ID, OSService: c.OSService, Interval: c.Interval, Timeout: c.Timeout, } } func (c *CheckOSService) Start() { c.stopLock.Lock() defer c.stopLock.Unlock() c.stop = false c.stopCh = make(chan struct{}) c.stopWg.Add(1) go c.run() } func (c *CheckOSService) Stop() { c.stopLock.Lock() defer c.stopLock.Unlock() if !c.stop { c.stop = true close(c.stopCh) } // Wait for the c.run() goroutine to complete before returning. c.stopWg.Wait() } func (c *CheckOSService) run() { defer c.stopWg.Done() // Get the randomized initial pause time initialPauseTime := lib.RandomStagger(c.Interval) next := time.After(initialPauseTime) for { select { case <-next: c.check() next = time.After(c.Interval) case <-c.stopCh: return } } } func (c *CheckOSService) doCheck() (string, error) { err := c.Client.Check(c.OSService) if err == nil { return api.HealthPassing, nil } if errors.Is(err, ErrOSServiceStatusCritical) { return api.HealthCritical, err } return api.HealthWarning, err } func (c *CheckOSService) check() { var out string var status string var err error waitCh := make(chan error, 1) go func() { status, err = c.doCheck() waitCh <- err }() timeout := 30 * time.Second if c.Timeout > 0 { timeout = c.Timeout } select { case <-time.After(timeout): msg := fmt.Sprintf("Timed out (%s) running check", timeout.String()) c.Logger.Warn("Timed out running check", "check", c.CheckID.String(), "timeout", timeout.String(), ) c.StatusHandler.updateCheck(c.CheckID, api.HealthCritical, msg) // Now wait for the process to exit so we never start another // instance concurrently. <-waitCh return case err = <-waitCh: // The process returned before the timeout, proceed normally } if err != nil { c.Logger.Debug("Check failed", "check", c.CheckID.String(), "error", err, ) out = err.Error() } c.StatusHandler.updateCheck(c.CheckID, status, out) } // StatusHandler keep tracks of successive error/success counts and ensures // that status can be set to critical/passing only once the successive number of event // reaches the given threshold. type StatusHandler struct { inner CheckNotifier logger hclog.Logger successBeforePassing int successCounter int failuresBeforeWarning int failuresBeforeCritical int failuresCounter int } // NewStatusHandler set counters values to threshold in order to immediatly update status after first check. func NewStatusHandler(inner CheckNotifier, logger hclog.Logger, successBeforePassing, failuresBeforeWarning, failuresBeforeCritical int) *StatusHandler { return &StatusHandler{ logger: logger, inner: inner, successBeforePassing: successBeforePassing, successCounter: successBeforePassing, failuresBeforeWarning: failuresBeforeWarning, failuresBeforeCritical: failuresBeforeCritical, failuresCounter: failuresBeforeCritical, } } func (s *StatusHandler) updateCheck(checkID structs.CheckID, status, output string) { if status == api.HealthPassing || status == api.HealthWarning { s.successCounter++ s.failuresCounter = 0 if s.successCounter >= s.successBeforePassing { s.logger.Debug("Check status updated", "check", checkID.String(), "status", status, ) s.inner.UpdateCheck(checkID, status, output) return } s.logger.Warn("Check passed but has not reached success threshold", "check", checkID.String(), "status", status, "success_count", s.successCounter, "success_threshold", s.successBeforePassing, ) } else { s.failuresCounter++ s.successCounter = 0 if s.failuresCounter >= s.failuresBeforeCritical { s.logger.Warn("Check is now critical", "check", checkID.String()) s.inner.UpdateCheck(checkID, status, output) return } // Defaults to same value as failuresBeforeCritical if not set. if s.failuresCounter >= s.failuresBeforeWarning { s.logger.Warn("Check is now warning", "check", checkID.String()) s.inner.UpdateCheck(checkID, api.HealthWarning, output) return } s.logger.Warn("Check failed but has not reached warning/failure threshold", "check", checkID.String(), "status", status, "failure_count", s.failuresCounter, "warning_threshold", s.failuresBeforeWarning, "failure_threshold", s.failuresBeforeCritical, ) } }