package proxycfg import ( "context" "errors" "fmt" "net" "reflect" "strings" "time" "github.com/hashicorp/go-hclog" "github.com/mitchellh/copystructure" "github.com/mitchellh/mapstructure" "github.com/hashicorp/consul/agent/cache" cachetype "github.com/hashicorp/consul/agent/cache-types" "github.com/hashicorp/consul/agent/structs" "github.com/hashicorp/consul/logging" ) type CacheNotifier interface { Notify(ctx context.Context, t string, r cache.Request, correlationID string, ch chan<- cache.UpdateEvent) error } type Health interface { Notify(ctx context.Context, req structs.ServiceSpecificRequest, correlationID string, ch chan<- cache.UpdateEvent) error } const ( coalesceTimeout = 200 * time.Millisecond rootsWatchID = "roots" leafWatchID = "leaf" intentionsWatchID = "intentions" serviceListWatchID = "service-list" federationStateListGatewaysWatchID = "federation-state-list-mesh-gateways" consulServerListWatchID = "consul-server-list" datacentersWatchID = "datacenters" serviceResolversWatchID = "service-resolvers" gatewayServicesWatchID = "gateway-services" gatewayConfigWatchID = "gateway-config" externalServiceIDPrefix = "external-service:" serviceLeafIDPrefix = "service-leaf:" serviceConfigIDPrefix = "service-config:" serviceResolverIDPrefix = "service-resolver:" serviceIntentionsIDPrefix = "service-intentions:" intentionUpstreamsID = "intention-upstreams" clusterConfigEntryID = "cluster-config" svcChecksWatchIDPrefix = cachetype.ServiceHTTPChecksName + ":" serviceIDPrefix = string(structs.UpstreamDestTypeService) + ":" preparedQueryIDPrefix = string(structs.UpstreamDestTypePreparedQuery) + ":" defaultPreparedQueryPollInterval = 30 * time.Second ) // state holds all the state needed to maintain the config for a registered // connect-proxy service. When a proxy registration is changed, the entire state // is discarded and a new one created. type state struct { // logger, source and cache are required to be set before calling Watch. logger hclog.Logger source *structs.QuerySource cache CacheNotifier health Health dnsConfig DNSConfig serverSNIFn ServerSNIFunc intentionDefaultAllow bool // ctx and cancel store the context created during initWatches call ctx context.Context cancel func() kind structs.ServiceKind service string proxyID structs.ServiceID address string port int meta map[string]string taggedAddresses map[string]structs.ServiceAddress proxyCfg structs.ConnectProxyConfig token string ch chan cache.UpdateEvent snapCh chan ConfigSnapshot reqCh chan chan *ConfigSnapshot } type DNSConfig struct { Domain string AltDomain string } type ServerSNIFunc func(dc, nodeName string) string func copyProxyConfig(ns *structs.NodeService) (structs.ConnectProxyConfig, error) { if ns == nil { return structs.ConnectProxyConfig{}, nil } // Copy the config map proxyCfgRaw, err := copystructure.Copy(ns.Proxy) if err != nil { return structs.ConnectProxyConfig{}, err } proxyCfg, ok := proxyCfgRaw.(structs.ConnectProxyConfig) if !ok { return structs.ConnectProxyConfig{}, errors.New("failed to copy proxy config") } // we can safely modify these since we just copied them for idx := range proxyCfg.Upstreams { us := &proxyCfg.Upstreams[idx] if us.DestinationType != structs.UpstreamDestTypePreparedQuery && us.DestinationNamespace == "" { // default the upstreams target namespace to the namespace of the proxy // doing this here prevents needing much more complex logic a bunch of other // places and makes tracking these upstreams simpler as we can dedup them // with the maps tracking upstream ids being watched. proxyCfg.Upstreams[idx].DestinationNamespace = ns.EnterpriseMeta.NamespaceOrDefault() } } return proxyCfg, nil } // newState populates the state struct by copying relevant fields from the // NodeService and Token. We copy so that we can use them in a separate // goroutine later without reasoning about races with the NodeService passed // (especially for embedded fields like maps and slices). // // The returned state needs its required dependencies to be set before Watch // can be called. func newState(ns *structs.NodeService, token string) (*state, error) { switch ns.Kind { case structs.ServiceKindConnectProxy: case structs.ServiceKindTerminatingGateway: case structs.ServiceKindMeshGateway: case structs.ServiceKindIngressGateway: default: return nil, errors.New("not a connect-proxy, terminating-gateway, mesh-gateway, or ingress-gateway") } proxyCfg, err := copyProxyConfig(ns) if err != nil { return nil, err } taggedAddresses := make(map[string]structs.ServiceAddress) for k, v := range ns.TaggedAddresses { taggedAddresses[k] = v } meta := make(map[string]string) for k, v := range ns.Meta { meta[k] = v } return &state{ kind: ns.Kind, service: ns.Service, proxyID: ns.CompoundServiceID(), address: ns.Address, port: ns.Port, meta: meta, taggedAddresses: taggedAddresses, proxyCfg: proxyCfg, token: token, // 10 is fairly arbitrary here but allow for the 3 mandatory and a // reasonable number of upstream watches to all deliver their initial // messages in parallel without blocking the cache.Notify loops. It's not a // huge deal if we do for a short period so we don't need to be more // conservative to handle larger numbers of upstreams correctly but gives // some head room for normal operation to be non-blocking in most typical // cases. ch: make(chan cache.UpdateEvent, 10), snapCh: make(chan ConfigSnapshot, 1), reqCh: make(chan chan *ConfigSnapshot, 1), }, nil } // Watch initialized watches on all necessary cache data for the current proxy // registration state and returns a chan to observe updates to the // ConfigSnapshot that contains all necessary config state. The chan is closed // when the state is Closed. func (s *state) Watch() (<-chan ConfigSnapshot, error) { s.ctx, s.cancel = context.WithCancel(context.Background()) snap := s.initialConfigSnapshot() err := s.initWatches(&snap) if err != nil { s.cancel() return nil, err } go s.run(&snap) return s.snapCh, nil } // Close discards the state and stops any long-running watches. func (s *state) Close() error { if s.cancel != nil { s.cancel() } return nil } // initWatches sets up the watches needed for the particular service func (s *state) initWatches(snap *ConfigSnapshot) error { switch s.kind { case structs.ServiceKindConnectProxy: return s.initWatchesConnectProxy(snap) case structs.ServiceKindTerminatingGateway: return s.initWatchesTerminatingGateway() case structs.ServiceKindMeshGateway: return s.initWatchesMeshGateway() case structs.ServiceKindIngressGateway: return s.initWatchesIngressGateway() default: return fmt.Errorf("Unsupported service kind") } } func (s *state) watchMeshGateway(ctx context.Context, dc string, upstreamID string) error { return s.cache.Notify(ctx, cachetype.InternalServiceDumpName, &structs.ServiceDumpRequest{ Datacenter: dc, QueryOptions: structs.QueryOptions{Token: s.token}, ServiceKind: structs.ServiceKindMeshGateway, UseServiceKind: true, Source: *s.source, EnterpriseMeta: *structs.DefaultEnterpriseMeta(), }, "mesh-gateway:"+dc+":"+upstreamID, s.ch) } func (s *state) watchConnectProxyService(ctx context.Context, correlationId string, service string, dc string, filter string, entMeta *structs.EnterpriseMeta) error { var finalMeta structs.EnterpriseMeta finalMeta.Merge(entMeta) return s.health.Notify(ctx, structs.ServiceSpecificRequest{ Datacenter: dc, QueryOptions: structs.QueryOptions{ Token: s.token, Filter: filter, }, ServiceName: service, Connect: true, // Note that Identifier doesn't type-prefix for service any more as it's // the default and makes metrics and other things much cleaner. It's // simpler for us if we have the type to make things unambiguous. Source: *s.source, EnterpriseMeta: finalMeta, }, correlationId, s.ch) } // initWatchesConnectProxy sets up the watches needed based on current proxy registration // state. func (s *state) initWatchesConnectProxy(snap *ConfigSnapshot) error { // Watch for root changes err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Source: *s.source, }, rootsWatchID, s.ch) if err != nil { return err } // Watch the leaf cert err = s.cache.Notify(s.ctx, cachetype.ConnectCALeafName, &cachetype.ConnectCALeafRequest{ Datacenter: s.source.Datacenter, Token: s.token, Service: s.proxyCfg.DestinationServiceName, EnterpriseMeta: s.proxyID.EnterpriseMeta, }, leafWatchID, s.ch) if err != nil { return err } // Watch for intention updates err = s.cache.Notify(s.ctx, cachetype.IntentionMatchName, &structs.IntentionQueryRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Match: &structs.IntentionQueryMatch{ Type: structs.IntentionMatchDestination, Entries: []structs.IntentionMatchEntry{ { Namespace: s.proxyID.NamespaceOrDefault(), Name: s.proxyCfg.DestinationServiceName, }, }, }, }, intentionsWatchID, s.ch) if err != nil { return err } // Watch for service check updates err = s.cache.Notify(s.ctx, cachetype.ServiceHTTPChecksName, &cachetype.ServiceHTTPChecksRequest{ ServiceID: s.proxyCfg.DestinationServiceID, EnterpriseMeta: s.proxyID.EnterpriseMeta, }, svcChecksWatchIDPrefix+structs.ServiceIDString(s.proxyCfg.DestinationServiceID, &s.proxyID.EnterpriseMeta), s.ch) if err != nil { return err } // default the namespace to the namespace of this proxy service currentNamespace := s.proxyID.NamespaceOrDefault() if s.proxyCfg.TransparentProxy { // When in transparent proxy we will infer upstreams from intentions with this source err := s.cache.Notify(s.ctx, cachetype.IntentionUpstreamsName, &structs.ServiceSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, ServiceName: s.proxyCfg.DestinationServiceName, EnterpriseMeta: structs.NewEnterpriseMeta(s.proxyID.NamespaceOrEmpty()), }, intentionUpstreamsID, s.ch) if err != nil { return err } err = s.cache.Notify(s.ctx, cachetype.ConfigEntryName, &structs.ConfigEntryQuery{ Kind: structs.ClusterConfig, Name: structs.ClusterConfigCluster, Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, EnterpriseMeta: *structs.DefaultEnterpriseMeta(), }, clusterConfigEntryID, s.ch) if err != nil { return err } } // Watch for updates to service endpoints for all upstreams for i := range s.proxyCfg.Upstreams { u := s.proxyCfg.Upstreams[i] // This can be true if the upstream is a synthetic entry populated from centralized upstream config. // Watches should not be created for them. if u.CentrallyConfigured { continue } snap.ConnectProxy.UpstreamConfig[u.Identifier()] = &u dc := s.source.Datacenter if u.Datacenter != "" { dc = u.Datacenter } if s.proxyCfg.TransparentProxy && (dc == "" || dc == s.source.Datacenter) { // In TransparentProxy mode, watches for upstreams in the local DC are handled by the IntentionUpstreams watch. continue } ns := currentNamespace if u.DestinationNamespace != "" { ns = u.DestinationNamespace } cfg, err := parseReducedUpstreamConfig(u.Config) if err != nil { // Don't hard fail on a config typo, just warn. We'll fall back on // the plain discovery chain if there is an error so it's safe to // continue. s.logger.Warn("failed to parse upstream config", "upstream", u.Identifier(), "error", err, ) } switch u.DestinationType { case structs.UpstreamDestTypePreparedQuery: err = s.cache.Notify(s.ctx, cachetype.PreparedQueryName, &structs.PreparedQueryExecuteRequest{ Datacenter: dc, QueryOptions: structs.QueryOptions{Token: s.token, MaxAge: defaultPreparedQueryPollInterval}, QueryIDOrName: u.DestinationName, Connect: true, Source: *s.source, }, "upstream:"+u.Identifier(), s.ch) if err != nil { return err } case structs.UpstreamDestTypeService: fallthrough case "": // Treat unset as the default Service type err = s.cache.Notify(s.ctx, cachetype.CompiledDiscoveryChainName, &structs.DiscoveryChainRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Name: u.DestinationName, EvaluateInDatacenter: dc, EvaluateInNamespace: ns, OverrideMeshGateway: s.proxyCfg.MeshGateway.OverlayWith(u.MeshGateway), OverrideProtocol: cfg.Protocol, OverrideConnectTimeout: cfg.ConnectTimeout(), }, "discovery-chain:"+u.Identifier(), s.ch) if err != nil { return err } default: return fmt.Errorf("unknown upstream type: %q", u.DestinationType) } } return nil } // reducedProxyConfig represents the basic opaque config values that are now // managed with the discovery chain but for backwards compatibility reasons // should still affect how the proxy is configured. // // The full-blown config is agent/xds.UpstreamConfig type reducedUpstreamConfig struct { Protocol string `mapstructure:"protocol"` ConnectTimeoutMs int `mapstructure:"connect_timeout_ms"` } func (c *reducedUpstreamConfig) ConnectTimeout() time.Duration { return time.Duration(c.ConnectTimeoutMs) * time.Millisecond } func parseReducedUpstreamConfig(m map[string]interface{}) (reducedUpstreamConfig, error) { var cfg reducedUpstreamConfig err := mapstructure.WeakDecode(m, &cfg) return cfg, err } // initWatchesTerminatingGateway sets up the initial watches needed based on the terminating-gateway registration func (s *state) initWatchesTerminatingGateway() error { // Watch for root changes err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Source: *s.source, }, rootsWatchID, s.ch) if err != nil { s.logger.Named(logging.TerminatingGateway). Error("failed to register watch for root changes", "error", err) return err } // Watch for the terminating-gateway's linked services err = s.cache.Notify(s.ctx, cachetype.GatewayServicesName, &structs.ServiceSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, ServiceName: s.service, EnterpriseMeta: s.proxyID.EnterpriseMeta, }, gatewayServicesWatchID, s.ch) if err != nil { s.logger.Named(logging.TerminatingGateway). Error("failed to register watch for linked services", "error", err) return err } return nil } // initWatchesMeshGateway sets up the watches needed based on the current mesh gateway registration func (s *state) initWatchesMeshGateway() error { // Watch for root changes err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Source: *s.source, }, rootsWatchID, s.ch) if err != nil { return err } // Watch for all services err = s.cache.Notify(s.ctx, cachetype.CatalogServiceListName, &structs.DCSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Source: *s.source, EnterpriseMeta: *structs.WildcardEnterpriseMeta(), }, serviceListWatchID, s.ch) if err != nil { return err } if s.meta[structs.MetaWANFederationKey] == "1" { // Conveniently we can just use this service meta attribute in one // place here to set the machinery in motion and leave the conditional // behavior out of the rest of the package. err = s.cache.Notify(s.ctx, cachetype.FederationStateListMeshGatewaysName, &structs.DCSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Source: *s.source, }, federationStateListGatewaysWatchID, s.ch) if err != nil { return err } err = s.health.Notify(s.ctx, structs.ServiceSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, ServiceName: structs.ConsulServiceName, }, consulServerListWatchID, s.ch) if err != nil { return err } } // Eventually we will have to watch connect enable instances for each service as well as the // destination services themselves but those notifications will be setup later. However we // cannot setup those watches until we know what the services are. from the service list // watch above err = s.cache.Notify(s.ctx, cachetype.CatalogDatacentersName, &structs.DatacentersRequest{ QueryOptions: structs.QueryOptions{Token: s.token, MaxAge: 30 * time.Second}, }, datacentersWatchID, s.ch) if err != nil { return err } // Once we start getting notified about the datacenters we will setup watches on the // gateways within those other datacenters. We cannot do that here because we don't // know what they are yet. // Watch service-resolvers so we can setup service subset clusters err = s.cache.Notify(s.ctx, cachetype.ConfigEntriesName, &structs.ConfigEntryQuery{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Kind: structs.ServiceResolver, EnterpriseMeta: *structs.WildcardEnterpriseMeta(), }, serviceResolversWatchID, s.ch) if err != nil { s.logger.Named(logging.MeshGateway). Error("failed to register watch for service-resolver config entries", "error", err) return err } return err } func (s *state) initWatchesIngressGateway() error { // Watch for root changes err := s.cache.Notify(s.ctx, cachetype.ConnectCARootName, &structs.DCSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Source: *s.source, }, rootsWatchID, s.ch) if err != nil { return err } // Watch this ingress gateway's config entry err = s.cache.Notify(s.ctx, cachetype.ConfigEntryName, &structs.ConfigEntryQuery{ Kind: structs.IngressGateway, Name: s.service, Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, EnterpriseMeta: s.proxyID.EnterpriseMeta, }, gatewayConfigWatchID, s.ch) if err != nil { return err } // Watch the ingress-gateway's list of upstreams err = s.cache.Notify(s.ctx, cachetype.GatewayServicesName, &structs.ServiceSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, ServiceName: s.service, EnterpriseMeta: s.proxyID.EnterpriseMeta, }, gatewayServicesWatchID, s.ch) if err != nil { return err } return nil } func (s *state) initialConfigSnapshot() ConfigSnapshot { snap := ConfigSnapshot{ Kind: s.kind, Service: s.service, ProxyID: s.proxyID, Address: s.address, Port: s.port, ServiceMeta: s.meta, TaggedAddresses: s.taggedAddresses, Proxy: s.proxyCfg, Datacenter: s.source.Datacenter, ServerSNIFn: s.serverSNIFn, IntentionDefaultAllow: s.intentionDefaultAllow, } switch s.kind { case structs.ServiceKindConnectProxy: snap.ConnectProxy.DiscoveryChain = make(map[string]*structs.CompiledDiscoveryChain) snap.ConnectProxy.WatchedDiscoveryChains = make(map[string]context.CancelFunc) snap.ConnectProxy.WatchedUpstreams = make(map[string]map[string]context.CancelFunc) snap.ConnectProxy.WatchedUpstreamEndpoints = make(map[string]map[string]structs.CheckServiceNodes) snap.ConnectProxy.WatchedGateways = make(map[string]map[string]context.CancelFunc) snap.ConnectProxy.WatchedGatewayEndpoints = make(map[string]map[string]structs.CheckServiceNodes) snap.ConnectProxy.WatchedServiceChecks = make(map[structs.ServiceID][]structs.CheckType) snap.ConnectProxy.PreparedQueryEndpoints = make(map[string]structs.CheckServiceNodes) snap.ConnectProxy.UpstreamConfig = make(map[string]*structs.Upstream) case structs.ServiceKindTerminatingGateway: snap.TerminatingGateway.WatchedServices = make(map[structs.ServiceName]context.CancelFunc) snap.TerminatingGateway.WatchedIntentions = make(map[structs.ServiceName]context.CancelFunc) snap.TerminatingGateway.Intentions = make(map[structs.ServiceName]structs.Intentions) snap.TerminatingGateway.WatchedLeaves = make(map[structs.ServiceName]context.CancelFunc) snap.TerminatingGateway.ServiceLeaves = make(map[structs.ServiceName]*structs.IssuedCert) snap.TerminatingGateway.WatchedConfigs = make(map[structs.ServiceName]context.CancelFunc) snap.TerminatingGateway.ServiceConfigs = make(map[structs.ServiceName]*structs.ServiceConfigResponse) snap.TerminatingGateway.WatchedResolvers = make(map[structs.ServiceName]context.CancelFunc) snap.TerminatingGateway.ServiceResolvers = make(map[structs.ServiceName]*structs.ServiceResolverConfigEntry) snap.TerminatingGateway.ServiceResolversSet = make(map[structs.ServiceName]bool) snap.TerminatingGateway.ServiceGroups = make(map[structs.ServiceName]structs.CheckServiceNodes) snap.TerminatingGateway.GatewayServices = make(map[structs.ServiceName]structs.GatewayService) snap.TerminatingGateway.HostnameServices = make(map[structs.ServiceName]structs.CheckServiceNodes) case structs.ServiceKindMeshGateway: snap.MeshGateway.WatchedServices = make(map[structs.ServiceName]context.CancelFunc) snap.MeshGateway.WatchedDatacenters = make(map[string]context.CancelFunc) snap.MeshGateway.ServiceGroups = make(map[structs.ServiceName]structs.CheckServiceNodes) snap.MeshGateway.GatewayGroups = make(map[string]structs.CheckServiceNodes) snap.MeshGateway.ServiceResolvers = make(map[structs.ServiceName]*structs.ServiceResolverConfigEntry) snap.MeshGateway.HostnameDatacenters = make(map[string]structs.CheckServiceNodes) // there is no need to initialize the map of service resolvers as we // fully rebuild it every time we get updates case structs.ServiceKindIngressGateway: snap.IngressGateway.WatchedDiscoveryChains = make(map[string]context.CancelFunc) snap.IngressGateway.DiscoveryChain = make(map[string]*structs.CompiledDiscoveryChain) snap.IngressGateway.WatchedUpstreams = make(map[string]map[string]context.CancelFunc) snap.IngressGateway.WatchedUpstreamEndpoints = make(map[string]map[string]structs.CheckServiceNodes) snap.IngressGateway.WatchedGateways = make(map[string]map[string]context.CancelFunc) snap.IngressGateway.WatchedGatewayEndpoints = make(map[string]map[string]structs.CheckServiceNodes) } return snap } func (s *state) run(snap *ConfigSnapshot) { // Close the channel we return from Watch when we stop so consumers can stop // watching and clean up their goroutines. It's important we do this here and // not in Close since this routine sends on this chan and so might panic if it // gets closed from another goroutine. defer close(s.snapCh) // This turns out to be really fiddly/painful by just using time.Timer.C // directly in the code below since you can't detect when a timer is stopped // vs waiting in order to know to reset it. So just use a chan to send // ourselves messages. sendCh := make(chan struct{}) var coalesceTimer *time.Timer for { select { case <-s.ctx.Done(): return case u := <-s.ch: s.logger.Trace("A blocking query returned; handling snapshot update") if err := s.handleUpdate(u, snap); err != nil { s.logger.Error("Failed to handle update from watch", "id", u.CorrelationID, "error", err, ) continue } case <-sendCh: // Make a deep copy of snap so we don't mutate any of the embedded structs // etc on future updates. snapCopy, err := snap.Clone() if err != nil { s.logger.Error("Failed to copy config snapshot for proxy", "error", err, ) continue } select { // Try to send case s.snapCh <- *snapCopy: s.logger.Trace("Delivered new snapshot to proxy config watchers") // Allow the next change to trigger a send coalesceTimer = nil // Skip rest of loop - there is nothing to send since nothing changed on // this iteration continue // Avoid blocking if a snapshot is already buffered in snapCh as this can result in a deadlock. // See PR #9689 for more details. default: s.logger.Trace("Failed to deliver new snapshot to proxy config watchers") // Reset the timer to retry later. This is to ensure we attempt to redeliver the updated snapshot shortly. if coalesceTimer == nil { coalesceTimer = time.AfterFunc(coalesceTimeout, func() { sendCh <- struct{}{} }) } // Do not reset coalesceTimer since we just queued a timer-based refresh continue } case replyCh := <-s.reqCh: s.logger.Trace("A proxy config snapshot was requested") if !snap.Valid() { // Not valid yet just respond with nil and move on to next task. replyCh <- nil s.logger.Trace("The proxy's config snapshot is not valid yet") continue } // Make a deep copy of snap so we don't mutate any of the embedded structs // etc on future updates. snapCopy, err := snap.Clone() if err != nil { s.logger.Error("Failed to copy config snapshot for proxy", "error", err, ) continue } replyCh <- snapCopy // Skip rest of loop - there is nothing to send since nothing changed on // this iteration continue } // Check if snap is complete enough to be a valid config to deliver to a // proxy yet. if snap.Valid() { // Don't send it right away, set a short timer that will wait for updates // from any of the other cache values and deliver them all together. if coalesceTimer == nil { coalesceTimer = time.AfterFunc(coalesceTimeout, func() { // This runs in another goroutine so we can't just do the send // directly here as access to snap is racy. Instead, signal the main // loop above. sendCh <- struct{}{} }) } } } } func (s *state) handleUpdate(u cache.UpdateEvent, snap *ConfigSnapshot) error { switch s.kind { case structs.ServiceKindConnectProxy: return s.handleUpdateConnectProxy(u, snap) case structs.ServiceKindTerminatingGateway: return s.handleUpdateTerminatingGateway(u, snap) case structs.ServiceKindMeshGateway: return s.handleUpdateMeshGateway(u, snap) case structs.ServiceKindIngressGateway: return s.handleUpdateIngressGateway(u, snap) default: return fmt.Errorf("Unsupported service kind") } } func (s *state) handleUpdateConnectProxy(u cache.UpdateEvent, snap *ConfigSnapshot) error { if u.Err != nil { return fmt.Errorf("error filling agent cache: %v", u.Err) } switch { case u.CorrelationID == rootsWatchID: roots, ok := u.Result.(*structs.IndexedCARoots) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } snap.Roots = roots case u.CorrelationID == intentionsWatchID: resp, ok := u.Result.(*structs.IndexedIntentionMatches) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } if len(resp.Matches) > 0 { // RPC supports matching multiple services at once but we only ever // query with the one service we represent currently so just pick // the one result set up. snap.ConnectProxy.Intentions = resp.Matches[0] } snap.ConnectProxy.IntentionsSet = true case u.CorrelationID == intentionUpstreamsID: resp, ok := u.Result.(*structs.IndexedServiceList) if !ok { return fmt.Errorf("invalid type for response %T", u.Result) } seenServices := make(map[string]struct{}) for _, svc := range resp.Services { seenServices[svc.String()] = struct{}{} cfgMap := make(map[string]interface{}) u, ok := snap.ConnectProxy.UpstreamConfig[svc.String()] if ok { cfgMap = u.Config } cfg, err := parseReducedUpstreamConfig(cfgMap) if err != nil { // Don't hard fail on a config typo, just warn. We'll fall back on // the plain discovery chain if there is an error so it's safe to // continue. s.logger.Warn("failed to parse upstream config", "upstream", u.Identifier(), "error", err, ) } err = s.watchDiscoveryChain(snap, cfg, svc.String(), svc.Name, svc.NamespaceOrDefault()) if err != nil { return fmt.Errorf("failed to watch discovery chain for %s: %v", svc.String(), err) } } // Clean up data from services that were not in the update for sn := range snap.ConnectProxy.WatchedUpstreams { if _, ok := seenServices[sn]; !ok { delete(snap.ConnectProxy.WatchedUpstreams, sn) } } for sn := range snap.ConnectProxy.WatchedUpstreamEndpoints { if _, ok := seenServices[sn]; !ok { delete(snap.ConnectProxy.WatchedUpstreamEndpoints, sn) } } for sn := range snap.ConnectProxy.WatchedGateways { if _, ok := seenServices[sn]; !ok { delete(snap.ConnectProxy.WatchedGateways, sn) } } for sn := range snap.ConnectProxy.WatchedGatewayEndpoints { if _, ok := seenServices[sn]; !ok { delete(snap.ConnectProxy.WatchedGatewayEndpoints, sn) } } for sn, cancelFn := range snap.ConnectProxy.WatchedDiscoveryChains { if _, ok := seenServices[sn]; !ok { cancelFn() delete(snap.ConnectProxy.WatchedDiscoveryChains, sn) delete(snap.ConnectProxy.DiscoveryChain, sn) } } case strings.HasPrefix(u.CorrelationID, "upstream:"+preparedQueryIDPrefix): resp, ok := u.Result.(*structs.PreparedQueryExecuteResponse) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } pq := strings.TrimPrefix(u.CorrelationID, "upstream:") snap.ConnectProxy.PreparedQueryEndpoints[pq] = resp.Nodes case strings.HasPrefix(u.CorrelationID, svcChecksWatchIDPrefix): resp, ok := u.Result.([]structs.CheckType) if !ok { return fmt.Errorf("invalid type for service checks response: %T, want: []structs.CheckType", u.Result) } svcID := structs.ServiceIDFromString(strings.TrimPrefix(u.CorrelationID, svcChecksWatchIDPrefix)) snap.ConnectProxy.WatchedServiceChecks[svcID] = resp case u.CorrelationID == clusterConfigEntryID: resp, ok := u.Result.(*structs.ConfigEntryResponse) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } if resp.Entry != nil { clusterConf, ok := resp.Entry.(*structs.ClusterConfigEntry) if !ok { return fmt.Errorf("invalid type for config entry: %T", resp.Entry) } snap.ConnectProxy.ClusterConfig = clusterConf } else { snap.ConnectProxy.ClusterConfig = nil } snap.ConnectProxy.ClusterConfigSet = true default: return s.handleUpdateUpstreams(u, &snap.ConnectProxy.ConfigSnapshotUpstreams) } return nil } func (s *state) handleUpdateUpstreams(u cache.UpdateEvent, snap *ConfigSnapshotUpstreams) error { if u.Err != nil { return fmt.Errorf("error filling agent cache: %v", u.Err) } switch { case u.CorrelationID == leafWatchID: leaf, ok := u.Result.(*structs.IssuedCert) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } snap.Leaf = leaf case strings.HasPrefix(u.CorrelationID, "discovery-chain:"): resp, ok := u.Result.(*structs.DiscoveryChainResponse) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } svc := strings.TrimPrefix(u.CorrelationID, "discovery-chain:") snap.DiscoveryChain[svc] = resp.Chain if err := s.resetWatchesFromChain(svc, resp.Chain, snap); err != nil { return err } case strings.HasPrefix(u.CorrelationID, "upstream-target:"): resp, ok := u.Result.(*structs.IndexedCheckServiceNodes) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } correlationID := strings.TrimPrefix(u.CorrelationID, "upstream-target:") targetID, svc, ok := removeColonPrefix(correlationID) if !ok { return fmt.Errorf("invalid correlation id %q", u.CorrelationID) } if _, ok := snap.WatchedUpstreamEndpoints[svc]; !ok { snap.WatchedUpstreamEndpoints[svc] = make(map[string]structs.CheckServiceNodes) } snap.WatchedUpstreamEndpoints[svc][targetID] = resp.Nodes case strings.HasPrefix(u.CorrelationID, "mesh-gateway:"): resp, ok := u.Result.(*structs.IndexedNodesWithGateways) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } correlationID := strings.TrimPrefix(u.CorrelationID, "mesh-gateway:") dc, svc, ok := removeColonPrefix(correlationID) if !ok { return fmt.Errorf("invalid correlation id %q", u.CorrelationID) } if _, ok = snap.WatchedGatewayEndpoints[svc]; !ok { snap.WatchedGatewayEndpoints[svc] = make(map[string]structs.CheckServiceNodes) } snap.WatchedGatewayEndpoints[svc][dc] = resp.Nodes default: return fmt.Errorf("unknown correlation ID: %s", u.CorrelationID) } return nil } func removeColonPrefix(s string) (string, string, bool) { idx := strings.Index(s, ":") if idx == -1 { return "", "", false } return s[0:idx], s[idx+1:], true } func (s *state) resetWatchesFromChain( id string, chain *structs.CompiledDiscoveryChain, snap *ConfigSnapshotUpstreams, ) error { s.logger.Trace("resetting watches for discovery chain", "id", id) if chain == nil { return fmt.Errorf("not possible to arrive here with no discovery chain") } // Initialize relevant sub maps. if _, ok := snap.WatchedUpstreams[id]; !ok { snap.WatchedUpstreams[id] = make(map[string]context.CancelFunc) } if _, ok := snap.WatchedUpstreamEndpoints[id]; !ok { snap.WatchedUpstreamEndpoints[id] = make(map[string]structs.CheckServiceNodes) } if _, ok := snap.WatchedGateways[id]; !ok { snap.WatchedGateways[id] = make(map[string]context.CancelFunc) } if _, ok := snap.WatchedGatewayEndpoints[id]; !ok { snap.WatchedGatewayEndpoints[id] = make(map[string]structs.CheckServiceNodes) } // We could invalidate this selectively based on a hash of the relevant // resolver information, but for now just reset anything about this // upstream when the chain changes in any way. // // TODO(rb): content hash based add/remove for targetID, cancelFn := range snap.WatchedUpstreams[id] { s.logger.Trace("stopping watch of target", "upstream", id, "chain", chain.ServiceName, "target", targetID, ) delete(snap.WatchedUpstreams[id], targetID) delete(snap.WatchedUpstreamEndpoints[id], targetID) cancelFn() } needGateways := make(map[string]struct{}) for _, target := range chain.Targets { s.logger.Trace("initializing watch of target", "upstream", id, "chain", chain.ServiceName, "target", target.ID, "mesh-gateway-mode", target.MeshGateway.Mode, ) // We'll get endpoints from the gateway query, but the health still has // to come from the backing service query. switch target.MeshGateway.Mode { case structs.MeshGatewayModeRemote: needGateways[target.Datacenter] = struct{}{} case structs.MeshGatewayModeLocal: needGateways[s.source.Datacenter] = struct{}{} } ctx, cancel := context.WithCancel(s.ctx) err := s.watchConnectProxyService( ctx, "upstream-target:"+target.ID+":"+id, target.Service, target.Datacenter, target.Subset.Filter, target.GetEnterpriseMetadata(), ) if err != nil { cancel() return err } snap.WatchedUpstreams[id][target.ID] = cancel } for dc := range needGateways { if _, ok := snap.WatchedGateways[id][dc]; ok { continue } s.logger.Trace("initializing watch of mesh gateway in datacenter", "upstream", id, "chain", chain.ServiceName, "datacenter", dc, ) ctx, cancel := context.WithCancel(s.ctx) err := s.watchMeshGateway(ctx, dc, id) if err != nil { cancel() return err } snap.WatchedGateways[id][dc] = cancel } for dc, cancelFn := range snap.WatchedGateways[id] { if _, ok := needGateways[dc]; ok { continue } s.logger.Trace("stopping watch of mesh gateway in datacenter", "upstream", id, "chain", chain.ServiceName, "datacenter", dc, ) delete(snap.WatchedGateways[id], dc) delete(snap.WatchedGatewayEndpoints[id], dc) cancelFn() } return nil } func (s *state) handleUpdateTerminatingGateway(u cache.UpdateEvent, snap *ConfigSnapshot) error { if u.Err != nil { return fmt.Errorf("error filling agent cache: %v", u.Err) } logger := s.logger.Named(logging.TerminatingGateway) switch { case u.CorrelationID == rootsWatchID: roots, ok := u.Result.(*structs.IndexedCARoots) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } snap.Roots = roots // Update watches based on the current list of services associated with the terminating-gateway case u.CorrelationID == gatewayServicesWatchID: services, ok := u.Result.(*structs.IndexedGatewayServices) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } svcMap := make(map[structs.ServiceName]struct{}) for _, svc := range services.Services { // Make sure to add every service to this map, we use it to cancel watches below. svcMap[svc.Service] = struct{}{} // Store the gateway <-> service mapping for TLS origination snap.TerminatingGateway.GatewayServices[svc.Service] = *svc // Watch the health endpoint to discover endpoints for the service if _, ok := snap.TerminatingGateway.WatchedServices[svc.Service]; !ok { ctx, cancel := context.WithCancel(s.ctx) err := s.health.Notify(ctx, structs.ServiceSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, ServiceName: svc.Service.Name, EnterpriseMeta: svc.Service.EnterpriseMeta, // The gateway acts as the service's proxy, so we do NOT want to discover other proxies Connect: false, }, externalServiceIDPrefix+svc.Service.String(), s.ch) if err != nil { logger.Error("failed to register watch for external-service", "service", svc.Service.String(), "error", err, ) cancel() return err } snap.TerminatingGateway.WatchedServices[svc.Service] = cancel } // Watch intentions with this service as their destination // The gateway will enforce intentions for connections to the service if _, ok := snap.TerminatingGateway.WatchedIntentions[svc.Service]; !ok { ctx, cancel := context.WithCancel(s.ctx) err := s.cache.Notify(ctx, cachetype.IntentionMatchName, &structs.IntentionQueryRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Match: &structs.IntentionQueryMatch{ Type: structs.IntentionMatchDestination, Entries: []structs.IntentionMatchEntry{ { Namespace: svc.Service.NamespaceOrDefault(), Name: svc.Service.Name, }, }, }, }, serviceIntentionsIDPrefix+svc.Service.String(), s.ch) if err != nil { logger.Error("failed to register watch for service-intentions", "service", svc.Service.String(), "error", err, ) cancel() return err } snap.TerminatingGateway.WatchedIntentions[svc.Service] = cancel } // Watch leaf certificate for the service // This cert is used to terminate mTLS connections on the service's behalf if _, ok := snap.TerminatingGateway.WatchedLeaves[svc.Service]; !ok { ctx, cancel := context.WithCancel(s.ctx) err := s.cache.Notify(ctx, cachetype.ConnectCALeafName, &cachetype.ConnectCALeafRequest{ Datacenter: s.source.Datacenter, Token: s.token, Service: svc.Service.Name, EnterpriseMeta: svc.Service.EnterpriseMeta, }, serviceLeafIDPrefix+svc.Service.String(), s.ch) if err != nil { logger.Error("failed to register watch for a service-leaf", "service", svc.Service.String(), "error", err, ) cancel() return err } snap.TerminatingGateway.WatchedLeaves[svc.Service] = cancel } // Watch service configs for the service. // These are used to determine the protocol for the target service. if _, ok := snap.TerminatingGateway.WatchedConfigs[svc.Service]; !ok { ctx, cancel := context.WithCancel(s.ctx) err := s.cache.Notify(ctx, cachetype.ResolvedServiceConfigName, &structs.ServiceConfigRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Name: svc.Service.Name, EnterpriseMeta: svc.Service.EnterpriseMeta, }, serviceConfigIDPrefix+svc.Service.String(), s.ch) if err != nil { logger.Error("failed to register watch for a resolved service config", "service", svc.Service.String(), "error", err, ) cancel() return err } snap.TerminatingGateway.WatchedConfigs[svc.Service] = cancel } // Watch service resolvers for the service // These are used to create clusters and endpoints for the service subsets if _, ok := snap.TerminatingGateway.WatchedResolvers[svc.Service]; !ok { ctx, cancel := context.WithCancel(s.ctx) err := s.cache.Notify(ctx, cachetype.ConfigEntriesName, &structs.ConfigEntryQuery{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Kind: structs.ServiceResolver, Name: svc.Service.Name, EnterpriseMeta: svc.Service.EnterpriseMeta, }, serviceResolverIDPrefix+svc.Service.String(), s.ch) if err != nil { logger.Error("failed to register watch for a service-resolver", "service", svc.Service.String(), "error", err, ) cancel() return err } snap.TerminatingGateway.WatchedResolvers[svc.Service] = cancel } } // Delete gateway service mapping for services that were not in the update for sn := range snap.TerminatingGateway.GatewayServices { if _, ok := svcMap[sn]; !ok { delete(snap.TerminatingGateway.GatewayServices, sn) } } // Clean up services with hostname mapping for services that were not in the update for sn := range snap.TerminatingGateway.HostnameServices { if _, ok := svcMap[sn]; !ok { delete(snap.TerminatingGateway.HostnameServices, sn) } } // Cancel service instance watches for services that were not in the update for sn, cancelFn := range snap.TerminatingGateway.WatchedServices { if _, ok := svcMap[sn]; !ok { logger.Debug("canceling watch for service", "service", sn.String()) delete(snap.TerminatingGateway.WatchedServices, sn) delete(snap.TerminatingGateway.ServiceGroups, sn) cancelFn() } } // Cancel leaf cert watches for services that were not in the update for sn, cancelFn := range snap.TerminatingGateway.WatchedLeaves { if _, ok := svcMap[sn]; !ok { logger.Debug("canceling watch for leaf cert", "service", sn.String()) delete(snap.TerminatingGateway.WatchedLeaves, sn) delete(snap.TerminatingGateway.ServiceLeaves, sn) cancelFn() } } // Cancel service config watches for services that were not in the update for sn, cancelFn := range snap.TerminatingGateway.WatchedConfigs { if _, ok := svcMap[sn]; !ok { logger.Debug("canceling watch for resolved service config", "service", sn.String()) delete(snap.TerminatingGateway.WatchedConfigs, sn) delete(snap.TerminatingGateway.ServiceConfigs, sn) cancelFn() } } // Cancel service-resolver watches for services that were not in the update for sn, cancelFn := range snap.TerminatingGateway.WatchedResolvers { if _, ok := svcMap[sn]; !ok { logger.Debug("canceling watch for service-resolver", "service", sn.String()) delete(snap.TerminatingGateway.WatchedResolvers, sn) delete(snap.TerminatingGateway.ServiceResolvers, sn) delete(snap.TerminatingGateway.ServiceResolversSet, sn) cancelFn() } } // Cancel intention watches for services that were not in the update for sn, cancelFn := range snap.TerminatingGateway.WatchedIntentions { if _, ok := svcMap[sn]; !ok { logger.Debug("canceling watch for intention", "service", sn.String()) delete(snap.TerminatingGateway.WatchedIntentions, sn) delete(snap.TerminatingGateway.Intentions, sn) cancelFn() } } case strings.HasPrefix(u.CorrelationID, externalServiceIDPrefix): resp, ok := u.Result.(*structs.IndexedCheckServiceNodes) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, externalServiceIDPrefix)) delete(snap.TerminatingGateway.ServiceGroups, sn) delete(snap.TerminatingGateway.HostnameServices, sn) if len(resp.Nodes) > 0 { snap.TerminatingGateway.ServiceGroups[sn] = resp.Nodes snap.TerminatingGateway.HostnameServices[sn] = s.hostnameEndpoints(logging.TerminatingGateway, snap.Datacenter, resp.Nodes) } // Store leaf cert for watched service case strings.HasPrefix(u.CorrelationID, serviceLeafIDPrefix): leaf, ok := u.Result.(*structs.IssuedCert) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceLeafIDPrefix)) snap.TerminatingGateway.ServiceLeaves[sn] = leaf case strings.HasPrefix(u.CorrelationID, serviceConfigIDPrefix): serviceConfig, ok := u.Result.(*structs.ServiceConfigResponse) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceConfigIDPrefix)) snap.TerminatingGateway.ServiceConfigs[sn] = serviceConfig case strings.HasPrefix(u.CorrelationID, serviceResolverIDPrefix): configEntries, ok := u.Result.(*structs.IndexedConfigEntries) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceResolverIDPrefix)) // There should only ever be one entry for a service resolver within a namespace if len(configEntries.Entries) == 1 { if resolver, ok := configEntries.Entries[0].(*structs.ServiceResolverConfigEntry); ok { snap.TerminatingGateway.ServiceResolvers[sn] = resolver } } snap.TerminatingGateway.ServiceResolversSet[sn] = true case strings.HasPrefix(u.CorrelationID, serviceIntentionsIDPrefix): resp, ok := u.Result.(*structs.IndexedIntentionMatches) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, serviceIntentionsIDPrefix)) if len(resp.Matches) > 0 { // RPC supports matching multiple services at once but we only ever // query with the one service we represent currently so just pick // the one result set up. snap.TerminatingGateway.Intentions[sn] = resp.Matches[0] } default: // do nothing } return nil } func (s *state) handleUpdateMeshGateway(u cache.UpdateEvent, snap *ConfigSnapshot) error { if u.Err != nil { return fmt.Errorf("error filling agent cache: %v", u.Err) } meshLogger := s.logger.Named(logging.MeshGateway) switch u.CorrelationID { case rootsWatchID: roots, ok := u.Result.(*structs.IndexedCARoots) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } snap.Roots = roots case federationStateListGatewaysWatchID: dcIndexedNodes, ok := u.Result.(*structs.DatacenterIndexedCheckServiceNodes) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } snap.MeshGateway.FedStateGateways = dcIndexedNodes.DatacenterNodes for dc, nodes := range dcIndexedNodes.DatacenterNodes { snap.MeshGateway.HostnameDatacenters[dc] = s.hostnameEndpoints(logging.MeshGateway, snap.Datacenter, nodes) } for dc := range snap.MeshGateway.HostnameDatacenters { if _, ok := dcIndexedNodes.DatacenterNodes[dc]; !ok { delete(snap.MeshGateway.HostnameDatacenters, dc) } } case serviceListWatchID: services, ok := u.Result.(*structs.IndexedServiceList) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } svcMap := make(map[structs.ServiceName]struct{}) for _, svc := range services.Services { // Make sure to add every service to this map, we use it to cancel // watches below. svcMap[svc] = struct{}{} if _, ok := snap.MeshGateway.WatchedServices[svc]; !ok { ctx, cancel := context.WithCancel(s.ctx) err := s.health.Notify(ctx, structs.ServiceSpecificRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, ServiceName: svc.Name, Connect: true, EnterpriseMeta: svc.EnterpriseMeta, }, fmt.Sprintf("connect-service:%s", svc.String()), s.ch) if err != nil { meshLogger.Error("failed to register watch for connect-service", "service", svc.String(), "error", err, ) cancel() return err } snap.MeshGateway.WatchedServices[svc] = cancel } } for sid, cancelFn := range snap.MeshGateway.WatchedServices { if _, ok := svcMap[sid]; !ok { meshLogger.Debug("canceling watch for service", "service", sid.String()) // TODO (gateways) Should the sid also be deleted from snap.MeshGateway.ServiceGroups? // Do those endpoints get cleaned up some other way? delete(snap.MeshGateway.WatchedServices, sid) cancelFn() } } snap.MeshGateway.WatchedServicesSet = true case datacentersWatchID: datacentersRaw, ok := u.Result.(*[]string) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } if datacentersRaw == nil { return fmt.Errorf("invalid response with a nil datacenter list") } datacenters := *datacentersRaw for _, dc := range datacenters { if dc == s.source.Datacenter { continue } if _, ok := snap.MeshGateway.WatchedDatacenters[dc]; !ok { ctx, cancel := context.WithCancel(s.ctx) err := s.cache.Notify(ctx, cachetype.InternalServiceDumpName, &structs.ServiceDumpRequest{ Datacenter: dc, QueryOptions: structs.QueryOptions{Token: s.token}, ServiceKind: structs.ServiceKindMeshGateway, UseServiceKind: true, Source: *s.source, EnterpriseMeta: *structs.DefaultEnterpriseMeta(), }, fmt.Sprintf("mesh-gateway:%s", dc), s.ch) if err != nil { meshLogger.Error("failed to register watch for mesh-gateway", "datacenter", dc, "error", err, ) cancel() return err } snap.MeshGateway.WatchedDatacenters[dc] = cancel } } for dc, cancelFn := range snap.MeshGateway.WatchedDatacenters { found := false for _, dcCurrent := range datacenters { if dcCurrent == dc { found = true break } } if !found { delete(snap.MeshGateway.WatchedDatacenters, dc) cancelFn() } } case serviceResolversWatchID: configEntries, ok := u.Result.(*structs.IndexedConfigEntries) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } resolvers := make(map[structs.ServiceName]*structs.ServiceResolverConfigEntry) for _, entry := range configEntries.Entries { if resolver, ok := entry.(*structs.ServiceResolverConfigEntry); ok { resolvers[structs.NewServiceName(resolver.Name, &resolver.EnterpriseMeta)] = resolver } } snap.MeshGateway.ServiceResolvers = resolvers case consulServerListWatchID: resp, ok := u.Result.(*structs.IndexedCheckServiceNodes) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } // Do some initial sanity checks to avoid doing something dumb. for _, csn := range resp.Nodes { if csn.Service.Service != structs.ConsulServiceName { return fmt.Errorf("expected service name %q but got %q", structs.ConsulServiceName, csn.Service.Service) } if csn.Node.Datacenter != snap.Datacenter { return fmt.Errorf("expected datacenter %q but got %q", snap.Datacenter, csn.Node.Datacenter) } } snap.MeshGateway.ConsulServers = resp.Nodes default: switch { case strings.HasPrefix(u.CorrelationID, "connect-service:"): resp, ok := u.Result.(*structs.IndexedCheckServiceNodes) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } sn := structs.ServiceNameFromString(strings.TrimPrefix(u.CorrelationID, "connect-service:")) if len(resp.Nodes) > 0 { snap.MeshGateway.ServiceGroups[sn] = resp.Nodes } else if _, ok := snap.MeshGateway.ServiceGroups[sn]; ok { delete(snap.MeshGateway.ServiceGroups, sn) } case strings.HasPrefix(u.CorrelationID, "mesh-gateway:"): resp, ok := u.Result.(*structs.IndexedNodesWithGateways) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } dc := strings.TrimPrefix(u.CorrelationID, "mesh-gateway:") delete(snap.MeshGateway.GatewayGroups, dc) delete(snap.MeshGateway.HostnameDatacenters, dc) if len(resp.Nodes) > 0 { snap.MeshGateway.GatewayGroups[dc] = resp.Nodes snap.MeshGateway.HostnameDatacenters[dc] = s.hostnameEndpoints(logging.MeshGateway, snap.Datacenter, resp.Nodes) } default: // do nothing for now } } return nil } func (s *state) handleUpdateIngressGateway(u cache.UpdateEvent, snap *ConfigSnapshot) error { if u.Err != nil { return fmt.Errorf("error filling agent cache: %v", u.Err) } switch { case u.CorrelationID == rootsWatchID: roots, ok := u.Result.(*structs.IndexedCARoots) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } snap.Roots = roots case u.CorrelationID == gatewayConfigWatchID: resp, ok := u.Result.(*structs.ConfigEntryResponse) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } gatewayConf, ok := resp.Entry.(*structs.IngressGatewayConfigEntry) if !ok { return fmt.Errorf("invalid type for config entry: %T", resp.Entry) } snap.IngressGateway.TLSEnabled = gatewayConf.TLS.Enabled snap.IngressGateway.TLSSet = true if err := s.watchIngressLeafCert(snap); err != nil { return err } case u.CorrelationID == gatewayServicesWatchID: services, ok := u.Result.(*structs.IndexedGatewayServices) if !ok { return fmt.Errorf("invalid type for response: %T", u.Result) } // Update our upstreams and watches. var hosts []string watchedSvcs := make(map[string]struct{}) upstreamsMap := make(map[IngressListenerKey]structs.Upstreams) for _, service := range services.Services { u := makeUpstream(service) err := s.watchDiscoveryChain(snap, reducedUpstreamConfig{}, u.Identifier(), u.DestinationName, u.DestinationNamespace) if err != nil { return fmt.Errorf("failed to watch discovery chain for %s: %v", u.Identifier(), err) } watchedSvcs[u.Identifier()] = struct{}{} hosts = append(hosts, service.Hosts...) id := IngressListenerKey{Protocol: service.Protocol, Port: service.Port} upstreamsMap[id] = append(upstreamsMap[id], u) } snap.IngressGateway.Upstreams = upstreamsMap snap.IngressGateway.Hosts = hosts snap.IngressGateway.HostsSet = true for id, cancelFn := range snap.IngressGateway.WatchedDiscoveryChains { if _, ok := watchedSvcs[id]; !ok { cancelFn() delete(snap.IngressGateway.WatchedDiscoveryChains, id) } } if err := s.watchIngressLeafCert(snap); err != nil { return err } default: return s.handleUpdateUpstreams(u, &snap.IngressGateway.ConfigSnapshotUpstreams) } return nil } func makeUpstream(g *structs.GatewayService) structs.Upstream { upstream := structs.Upstream{ DestinationName: g.Service.Name, DestinationNamespace: g.Service.NamespaceOrDefault(), LocalBindPort: g.Port, IngressHosts: g.Hosts, // Pass the protocol that was configured on the ingress listener in order // to force that protocol on the Envoy listener. Config: map[string]interface{}{ "protocol": g.Protocol, }, } return upstream } func (s *state) watchDiscoveryChain(snap *ConfigSnapshot, cfg reducedUpstreamConfig, id, name, namespace string) error { if _, ok := snap.ConnectProxy.WatchedDiscoveryChains[id]; ok { return nil } ctx, cancel := context.WithCancel(s.ctx) err := s.cache.Notify(ctx, cachetype.CompiledDiscoveryChainName, &structs.DiscoveryChainRequest{ Datacenter: s.source.Datacenter, QueryOptions: structs.QueryOptions{Token: s.token}, Name: name, EvaluateInDatacenter: s.source.Datacenter, EvaluateInNamespace: namespace, OverrideProtocol: cfg.Protocol, OverrideConnectTimeout: cfg.ConnectTimeout(), }, "discovery-chain:"+id, s.ch) if err != nil { cancel() return err } switch s.kind { case structs.ServiceKindIngressGateway: snap.IngressGateway.WatchedDiscoveryChains[id] = cancel case structs.ServiceKindConnectProxy: snap.ConnectProxy.WatchedDiscoveryChains[id] = cancel default: cancel() return fmt.Errorf("unsupported kind %s", s.kind) } return nil } func (s *state) generateIngressDNSSANs(snap *ConfigSnapshot) []string { // Update our leaf cert watch with wildcard entries for our DNS domains as well as any // configured custom hostnames from the service. if !snap.IngressGateway.TLSEnabled { return nil } var dnsNames []string namespaces := make(map[string]struct{}) for _, upstreams := range snap.IngressGateway.Upstreams { for _, u := range upstreams { namespaces[u.DestinationNamespace] = struct{}{} } } for ns := range namespaces { // The default namespace is special cased in DNS resolution, so special // case it here. if ns == structs.IntentionDefaultNamespace { ns = "" } else { ns = ns + "." } dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s", ns, s.dnsConfig.Domain)) dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s.%s", ns, s.source.Datacenter, s.dnsConfig.Domain)) if s.dnsConfig.AltDomain != "" { dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s", ns, s.dnsConfig.AltDomain)) dnsNames = append(dnsNames, fmt.Sprintf("*.ingress.%s%s.%s", ns, s.source.Datacenter, s.dnsConfig.AltDomain)) } } dnsNames = append(dnsNames, snap.IngressGateway.Hosts...) return dnsNames } func (s *state) watchIngressLeafCert(snap *ConfigSnapshot) error { if !snap.IngressGateway.TLSSet || !snap.IngressGateway.HostsSet { return nil } // Watch the leaf cert if snap.IngressGateway.LeafCertWatchCancel != nil { snap.IngressGateway.LeafCertWatchCancel() } ctx, cancel := context.WithCancel(s.ctx) err := s.cache.Notify(ctx, cachetype.ConnectCALeafName, &cachetype.ConnectCALeafRequest{ Datacenter: s.source.Datacenter, Token: s.token, Service: s.service, DNSSAN: s.generateIngressDNSSANs(snap), EnterpriseMeta: s.proxyID.EnterpriseMeta, }, leafWatchID, s.ch) if err != nil { cancel() return err } snap.IngressGateway.LeafCertWatchCancel = cancel return nil } // CurrentSnapshot synchronously returns the current ConfigSnapshot if there is // one ready. If we don't have one yet because not all necessary parts have been // returned (i.e. both roots and leaf cert), nil is returned. func (s *state) CurrentSnapshot() *ConfigSnapshot { // Make a chan for the response to be sent on ch := make(chan *ConfigSnapshot, 1) s.reqCh <- ch // Wait for the response return <-ch } // Changed returns whether or not the passed NodeService has had any of the // fields we care about for config state watching changed or a different token. func (s *state) Changed(ns *structs.NodeService, token string) bool { if ns == nil { return true } proxyCfg, err := copyProxyConfig(ns) if err != nil { s.logger.Warn("Failed to parse proxy config and will treat the new service as unchanged") } return ns.Kind != s.kind || s.proxyID != ns.CompoundServiceID() || s.address != ns.Address || s.port != ns.Port || !reflect.DeepEqual(s.proxyCfg, proxyCfg) || s.token != token } // hostnameEndpoints returns all CheckServiceNodes that have hostnames instead of IPs as the address. // Envoy cannot resolve hostnames provided through EDS, so we exclusively use CDS for these clusters. // If there is a mix of hostnames and addresses we exclusively use the hostnames, since clusters cannot discover // services with both EDS and DNS. func (s *state) hostnameEndpoints(loggerName string, localDC string, nodes structs.CheckServiceNodes) structs.CheckServiceNodes { var ( hasIP bool hasHostname bool resp structs.CheckServiceNodes ) for _, n := range nodes { addr, _ := n.BestAddress(localDC != n.Node.Datacenter) if net.ParseIP(addr) != nil { hasIP = true continue } hasHostname = true resp = append(resp, n) } if hasHostname && hasIP { dc := nodes[0].Node.Datacenter sn := nodes[0].Service.CompoundServiceName() s.logger.Named(loggerName). Warn("service contains instances with mix of hostnames and IP addresses; only hostnames will be passed to Envoy", "dc", dc, "service", sn.String()) } return resp }