package connect import ( "crypto/tls" "crypto/x509" "errors" "io/ioutil" "sync" "github.com/hashicorp/consul/agent/connect" "github.com/hashicorp/consul/api" ) // verifierFunc is a function that can accept rawCertificate bytes from a peer // and verify them against a given tls.Config. It's called from the // tls.Config.VerifyPeerCertificate hook. // // We don't pass verifiedChains since that is always nil in our usage. // Implementations can use the roots provided in the cfg to verify the certs. // // The passed *tls.Config may have a nil VerifyPeerCertificates function but // will have correct roots, leaf and other fields. type verifierFunc func(cfg *tls.Config, rawCerts [][]byte) error // defaultTLSConfig returns the standard config with no peer verifier. It is // insecure to use it as-is. func defaultTLSConfig() *tls.Config { cfg := &tls.Config{ MinVersion: tls.VersionTLS12, ClientAuth: tls.RequireAndVerifyClientCert, // We don't have access to go internals that decide if AES hardware // acceleration is available in order to prefer CHA CHA if not. So let's // just always prefer AES for now. We can look into doing something uglier // later like using an external lib for AES checking if it seems important. // https://github.com/golang/go/blob/df91b8044dbe790c69c16058330f545be069cc1f/src/crypto/tls/common.go#L919:14 CipherSuites: []uint16{ tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, }, // We have to set this since otherwise Go will attempt to verify DNS names // match DNS SAN/CN which we don't want. We hook up VerifyPeerCertificate to // do our own path validation as well as Connect AuthZ. InsecureSkipVerify: true, // Include h2 to allow connect http servers to automatically support http2. // See: https://github.com/golang/go/blob/917c33fe8672116b04848cf11545296789cafd3b/src/net/http/server.go#L2724-L2731 NextProtos: []string{"h2"}, } return cfg } // devTLSConfigFromFiles returns a default TLS Config but with certs and CAs // based on local files for dev. No verification is setup. func devTLSConfigFromFiles(caFile, certFile, keyFile string) (*tls.Config, error) { roots := x509.NewCertPool() bs, err := ioutil.ReadFile(caFile) if err != nil { return nil, err } roots.AppendCertsFromPEM(bs) cert, err := tls.LoadX509KeyPair(certFile, keyFile) if err != nil { return nil, err } cfg := defaultTLSConfig() cfg.Certificates = []tls.Certificate{cert} cfg.RootCAs = roots cfg.ClientCAs = roots return cfg, nil } // verifyServerCertMatchesURI is used on tls connections dialled to a connect // server to ensure that the certificate it presented has the correct identity. func verifyServerCertMatchesURI(certs []*x509.Certificate, expected connect.CertURI) error { expectedStr := expected.URI().String() if len(certs) < 1 { return errors.New("peer certificate mismatch") } // Only check the first cert assuming this is the only leaf. It's not clear if // services might ever legitimately present multiple leaf certificates or if // the slice is just to allow presenting the whole chain of intermediates. cert := certs[0] // Our certs will only ever have a single URI for now so only check that if len(cert.URIs) < 1 { return errors.New("peer certificate mismatch") } // We may want to do better than string matching later in some special // cases and/or encapsulate the "match" logic inside the CertURI // implementation but for now this is all we need. if cert.URIs[0].String() == expectedStr { return nil } return errors.New("peer certificate mismatch") } // newServerSideVerifier returns a verifierFunc that wraps the provided // api.Client to verify the TLS chain and perform AuthZ for the server end of // the connection. The service name provided is used as the target serviceID // for the Authorization. func newServerSideVerifier(client *api.Client, serviceID string) verifierFunc { return func(tlsCfg *tls.Config, rawCerts [][]byte) error { leaf, err := verifyChain(tlsCfg, rawCerts, false) if err != nil { return err } // Check leaf is a cert we understand if len(leaf.URIs) < 1 { return errors.New("connect: invalid leaf certificate") } certURI, err := connect.ParseCertURI(leaf.URIs[0]) if err != nil { return errors.New("connect: invalid leaf certificate URI") } // No AuthZ if there is no client. if client == nil { return nil } // Perform AuthZ req := &api.AgentAuthorizeParams{ // TODO(banks): this is jank, we have a serviceID from the Service setup // but this needs to be a service name as the target. For now we are // relying on them usually being the same but this will break when they // are not. We either need to make Authorize endpoint optionally accept // IDs somehow or rethink this as it will require fetching the service // name sometime ahead of accepting requests (maybe along with TLS certs?) // which feels gross and will take extra plumbing to expose it to here. Target: serviceID, ClientCertURI: certURI.URI().String(), ClientCertSerial: connect.HexString(leaf.SerialNumber.Bytes()), } resp, err := client.Agent().ConnectAuthorize(req) if err != nil { return errors.New("connect: authz call failed: " + err.Error()) } if !resp.Authorized { return errors.New("connect: authz denied: " + resp.Reason) } return nil } } // clientSideVerifier is a verifierFunc that performs verification of certificates // on the client end of the connection. For now it is just basic TLS // verification since the identity check needs additional state and becomes // clunky to customise the callback for every outgoing request. That is done // within Service.Dial for now. func clientSideVerifier(tlsCfg *tls.Config, rawCerts [][]byte) error { _, err := verifyChain(tlsCfg, rawCerts, true) return err } // verifyChain performs standard TLS verification without enforcing remote // hostname matching. func verifyChain(tlsCfg *tls.Config, rawCerts [][]byte, client bool) (*x509.Certificate, error) { // Fetch leaf and intermediates. This is based on code form tls handshake. if len(rawCerts) < 1 { return nil, errors.New("tls: no certificates from peer") } certs := make([]*x509.Certificate, len(rawCerts)) for i, asn1Data := range rawCerts { cert, err := x509.ParseCertificate(asn1Data) if err != nil { return nil, errors.New("tls: failed to parse certificate from peer: " + err.Error()) } certs[i] = cert } cas := tlsCfg.RootCAs if client { cas = tlsCfg.ClientCAs } opts := x509.VerifyOptions{ Roots: cas, Intermediates: x509.NewCertPool(), } if !client { // Server side only sets KeyUsages in tls. This defaults to ServerAuth in // x509 lib. See // https://github.com/golang/go/blob/ee7dd810f9ca4e63ecfc1d3044869591783b8b74/src/crypto/x509/verify.go#L866-L868 opts.KeyUsages = []x509.ExtKeyUsage{x509.ExtKeyUsageClientAuth} } // All but the first cert are intermediates for _, cert := range certs[1:] { opts.Intermediates.AddCert(cert) } _, err := certs[0].Verify(opts) return certs[0], err } // dynamicTLSConfig represents the state for returning a tls.Config that can // have root and leaf certificates updated dynamically with all existing clients // and servers automatically picking up the changes. It requires initialising // with a valid base config from which all the non-certificate and verification // params are used. The base config passed should not be modified externally as // it is assumed to be serialised by the embedded mutex. type dynamicTLSConfig struct { base *tls.Config sync.Mutex leaf *tls.Certificate roots *x509.CertPool } // newDynamicTLSConfig returns a dynamicTLSConfig constructed from base. // base.Certificates[0] is used as the initial leaf and base.RootCAs is used as // the initial roots. func newDynamicTLSConfig(base *tls.Config) *dynamicTLSConfig { cfg := &dynamicTLSConfig{ base: base, } if len(base.Certificates) > 0 { cfg.leaf = &base.Certificates[0] } if base.RootCAs != nil { cfg.roots = base.RootCAs } return cfg } // Get fetches the lastest tls.Config with all the hooks attached to keep it // loading the most recent roots and certs even after future changes to cfg. // // The verifierFunc passed will be attached to the config returned such that it // runs with the _latest_ config object returned passed to it. That means that a // client can use this config for a long time and will still verify against the // latest roots even though the roots in the struct is has can't change. func (cfg *dynamicTLSConfig) Get(v verifierFunc) *tls.Config { cfg.Lock() defer cfg.Unlock() copy := cfg.base.Clone() copy.RootCAs = cfg.roots copy.ClientCAs = cfg.roots if v != nil { copy.VerifyPeerCertificate = func(rawCerts [][]byte, chains [][]*x509.Certificate) error { return v(cfg.Get(nil), rawCerts) } } copy.GetCertificate = func(_ *tls.ClientHelloInfo) (*tls.Certificate, error) { leaf := cfg.Leaf() if leaf == nil { return nil, errors.New("tls: no certificates configured") } return leaf, nil } copy.GetClientCertificate = func(_ *tls.CertificateRequestInfo) (*tls.Certificate, error) { leaf := cfg.Leaf() if leaf == nil { return nil, errors.New("tls: no certificates configured") } return leaf, nil } copy.GetConfigForClient = func(*tls.ClientHelloInfo) (*tls.Config, error) { return cfg.Get(v), nil } return copy } // SetRoots sets new roots. func (cfg *dynamicTLSConfig) SetRoots(roots *x509.CertPool) error { cfg.Lock() defer cfg.Unlock() cfg.roots = roots return nil } // SetLeaf sets a new leaf. func (cfg *dynamicTLSConfig) SetLeaf(leaf *tls.Certificate) error { cfg.Lock() defer cfg.Unlock() cfg.leaf = leaf return nil } // Roots returns the current CA root CertPool. func (cfg *dynamicTLSConfig) Roots() *x509.CertPool { cfg.Lock() defer cfg.Unlock() return cfg.roots } // Leaf returns the current Leaf certificate. func (cfg *dynamicTLSConfig) Leaf() *tls.Certificate { cfg.Lock() defer cfg.Unlock() return cfg.leaf }