package cache import ( "context" "fmt" "sync/atomic" "testing" "time" "github.com/stretchr/testify/mock" "github.com/stretchr/testify/require" ) // Test that a type registered with a periodic refresh can be watched. func TestCacheNotify(t *testing.T) { t.Parallel() typ := TestType(t) defer typ.AssertExpectations(t) c := TestCache(t) c.RegisterType("t", typ, &RegisterOptions{ Refresh: false, }) // Setup triggers to control when "updates" should be delivered trigger := make([]chan time.Time, 4) for i := range trigger { trigger[i] = make(chan time.Time) } // Configure the type typ.Static(FetchResult{Value: 1, Index: 4}, nil).Once().Run(func(args mock.Arguments) { // Assert the right request type - all real Fetch implementations do this so // it keeps us honest that Watch doesn't require type mangling which will // break in real life (hint: it did on the first attempt) _, ok := args.Get(1).(*MockRequest) require.True(t, ok) }) typ.Static(FetchResult{Value: 12, Index: 5}, nil).Once().WaitUntil(trigger[0]) typ.Static(FetchResult{Value: 12, Index: 5}, nil).Once().WaitUntil(trigger[1]) typ.Static(FetchResult{Value: 42, Index: 7}, nil).Once().WaitUntil(trigger[2]) // It's timing dependent whether the blocking loop manages to make another // call before we cancel so don't require it. We need to have a higher index // here because if the index is the same then the cache Get will not return // until the full 10 min timeout expires. This causes the last fetch to return // after cancellation as if it had timed out. typ.Static(FetchResult{Value: 42, Index: 8}, nil).WaitUntil(trigger[3]) require := require.New(t) ctx, cancel := context.WithCancel(context.Background()) defer cancel() ch := make(chan UpdateEvent) err := c.Notify(ctx, "t", TestRequest(t, RequestInfo{Key: "hello"}), "test", ch) require.NoError(err) // Should receive the first result pretty soon TestCacheNotifyChResult(t, ch, UpdateEvent{ CorrelationID: "test", Result: 1, Meta: ResultMeta{Hit: false, Index: 4}, Err: nil, }) // There should be no more updates delivered yet require.Len(ch, 0) // Trigger blocking query to return a "change" close(trigger[0]) // Should receive the next result pretty soon TestCacheNotifyChResult(t, ch, UpdateEvent{ CorrelationID: "test", Result: 12, // Note these are never cache "hits" because blocking will wait until there // is a new value at which point it's not considered a hit. Meta: ResultMeta{Hit: false, Index: 5}, Err: nil, }) // Register a second observer using same chan and request. Note that this is // testing a few things implicitly: // - that multiple watchers on the same cache entity are de-duped in their // requests to the "backend" // - that multiple watchers can distinguish their results using correlationID err = c.Notify(ctx, "t", TestRequest(t, RequestInfo{Key: "hello"}), "test2", ch) require.NoError(err) // Should get test2 notify immediately, and it should be a cache hit TestCacheNotifyChResult(t, ch, UpdateEvent{ CorrelationID: "test2", Result: 12, Meta: ResultMeta{Hit: true, Index: 5}, Err: nil, }) // We could wait for a full timeout but we can't directly observe it so // simulate the behaviour by triggering a response with the same value and // index as the last one. close(trigger[1]) // We should NOT be notified about that. Note this is timing dependent but // it's only a sanity check, if we somehow _do_ get the change delivered later // than 10ms the next value assertion will fail anyway. time.Sleep(10 * time.Millisecond) require.Len(ch, 0) // Trigger final update close(trigger[2]) TestCacheNotifyChResult(t, ch, UpdateEvent{ CorrelationID: "test", Result: 42, Meta: ResultMeta{Hit: false, Index: 7}, Err: nil, }, UpdateEvent{ CorrelationID: "test2", Result: 42, Meta: ResultMeta{Hit: false, Index: 7}, Err: nil, }) // Sanity check closing chan before context is cancelled doesn't panic //close(ch) // Close context cancel() // It's likely but not certain that at least one of the watchers was blocked // on the next cache Get so trigger that to timeout so we can observe the // watch goroutines being cleaned up. This is necessary since currently we // have no way to interrupt a blocking query. In practice it's fine to know // that after 10 mins max the blocking query will return and the resources // will be cleaned. close(trigger[3]) // I want to test that cancelling the context cleans up goroutines (which it // does from manual verification with debugger etc). I had a check based on a // similar approach to https://golang.org/src/net/http/main_test.go#L60 but it // was just too flaky because it relies on the timing of the error backoff // timer goroutines and similar so I've given up for now as I have more // important things to get working. } func TestCacheNotifyPolling(t *testing.T) { t.Parallel() typ := TestTypeNonBlocking(t) defer typ.AssertExpectations(t) c := TestCache(t) c.RegisterType("t", typ, &RegisterOptions{ Refresh: false, }) // Configure the type typ.Static(FetchResult{Value: 1, Index: 1}, nil).Once().Run(func(args mock.Arguments) { // Assert the right request type - all real Fetch implementations do this so // it keeps us honest that Watch doesn't require type mangling which will // break in real life (hint: it did on the first attempt) _, ok := args.Get(1).(*MockRequest) require.True(t, ok) }) typ.Static(FetchResult{Value: 12, Index: 1}, nil).Once() typ.Static(FetchResult{Value: 42, Index: 1}, nil).Once() require := require.New(t) ctx, cancel := context.WithCancel(context.Background()) defer cancel() ch := make(chan UpdateEvent) err := c.Notify(ctx, "t", TestRequest(t, RequestInfo{Key: "hello", MaxAge: 100 * time.Millisecond}), "test", ch) require.NoError(err) // Should receive the first result pretty soon TestCacheNotifyChResult(t, ch, UpdateEvent{ CorrelationID: "test", Result: 1, Meta: ResultMeta{Hit: false, Index: 1}, Err: nil, }) // There should be no more updates delivered yet require.Len(ch, 0) // make sure the updates do not come too quickly select { case <-time.After(50 * time.Millisecond): case <-ch: require.Fail("Received update too early") } // make sure we get the update not too far out. select { case <-time.After(100 * time.Millisecond): require.Fail("Didn't receive the notification") case result := <-ch: require.Equal(result.Result, 12) require.Equal(result.CorrelationID, "test") require.Equal(result.Meta.Hit, false) require.Equal(result.Meta.Index, uint64(1)) // pretty conservative check it should be even newer because without a second // notifier each value returned will have been executed just then and not served // from the cache. require.True(result.Meta.Age < 50*time.Millisecond) require.NoError(result.Err) } require.Len(ch, 0) // Register a second observer using same chan and request. Note that this is // testing a few things implicitly: // - that multiple watchers on the same cache entity are de-duped in their // requests to the "backend" // - that multiple watchers can distinguish their results using correlationID err = c.Notify(ctx, "t", TestRequest(t, RequestInfo{Key: "hello", MaxAge: 100 * time.Millisecond}), "test2", ch) require.NoError(err) // Should get test2 notify immediately, and it should be a cache hit TestCacheNotifyChResult(t, ch, UpdateEvent{ CorrelationID: "test2", Result: 12, Meta: ResultMeta{Hit: true, Index: 1}, Err: nil, }) require.Len(ch, 0) // wait for the next batch of responses events := make([]UpdateEvent, 0) // 110 is needed to allow for the jitter timeout := time.After(110 * time.Millisecond) for i := 0; i < 2; i++ { select { case <-timeout: require.Fail("UpdateEvent not received in time") case eve := <-ch: events = append(events, eve) } } require.Equal(events[0].Result, 42) require.Equal(events[0].Meta.Hit, false) require.Equal(events[0].Meta.Index, uint64(1)) require.True(events[0].Meta.Age < 50*time.Millisecond) require.NoError(events[0].Err) require.Equal(events[1].Result, 42) // Sometimes this would be a hit and others not. It all depends on when the various getWithIndex calls got fired. // If both are done concurrently then it will not be a cache hit but the request gets single flighted and both // get notified at the same time. // require.Equal(events[1].Meta.Hit, true) require.Equal(events[1].Meta.Index, uint64(1)) require.True(events[1].Meta.Age < 100*time.Millisecond) require.NoError(events[1].Err) } // Test that a refresh performs a backoff. func TestCacheWatch_ErrorBackoff(t *testing.T) { t.Parallel() typ := TestType(t) defer typ.AssertExpectations(t) c := TestCache(t) c.RegisterType("t", typ, &RegisterOptions{ Refresh: false, }) // Configure the type var retries uint32 fetchErr := fmt.Errorf("test fetch error") typ.Static(FetchResult{Value: 1, Index: 4}, nil).Once() typ.Static(FetchResult{Value: nil, Index: 5}, fetchErr).Run(func(args mock.Arguments) { atomic.AddUint32(&retries, 1) }) require := require.New(t) ctx, cancel := context.WithCancel(context.Background()) defer cancel() ch := make(chan UpdateEvent) err := c.Notify(ctx, "t", TestRequest(t, RequestInfo{Key: "hello"}), "test", ch) require.NoError(err) // Should receive the first result pretty soon TestCacheNotifyChResult(t, ch, UpdateEvent{ CorrelationID: "test", Result: 1, Meta: ResultMeta{Hit: false, Index: 4}, Err: nil, }) numErrors := 0 // Loop for a little while and count how many errors we see reported. If this // was running as fast as it could go we'd expect this to be huge. We have to // be a little careful here because the watch chan ch doesn't have a large // buffer so we could be artificially slowing down the loop without the // backoff actually taking effect. We can validate that by ensuring this test // fails without the backoff code reliably. timeoutC := time.After(500 * time.Millisecond) OUT: for { select { case <-timeoutC: break OUT case u := <-ch: numErrors++ require.Error(u.Err) } } // Must be fewer than 10 failures in that time require.True(numErrors < 10, fmt.Sprintf("numErrors: %d", numErrors)) // Check the number of RPCs as a sanity check too actual := atomic.LoadUint32(&retries) require.True(actual < 10, fmt.Sprintf("actual: %d", actual)) } // Test that a refresh performs a backoff. func TestCacheWatch_ErrorBackoffNonBlocking(t *testing.T) { t.Parallel() typ := TestTypeNonBlocking(t) defer typ.AssertExpectations(t) c := TestCache(t) c.RegisterType("t", typ, &RegisterOptions{ Refresh: false, }) // Configure the type var retries uint32 fetchErr := fmt.Errorf("test fetch error") typ.Static(FetchResult{Value: 1, Index: 4}, nil).Once() typ.Static(FetchResult{Value: nil, Index: 5}, fetchErr).Run(func(args mock.Arguments) { atomic.AddUint32(&retries, 1) }) require := require.New(t) ctx, cancel := context.WithCancel(context.Background()) defer cancel() ch := make(chan UpdateEvent) err := c.Notify(ctx, "t", TestRequest(t, RequestInfo{Key: "hello", MaxAge: 100 * time.Millisecond}), "test", ch) require.NoError(err) // Should receive the first result pretty soon TestCacheNotifyChResult(t, ch, UpdateEvent{ CorrelationID: "test", Result: 1, Meta: ResultMeta{Hit: false, Index: 4}, Err: nil, }) numErrors := 0 // Loop for a little while and count how many errors we see reported. If this // was running as fast as it could go we'd expect this to be huge. We have to // be a little careful here because the watch chan ch doesn't have a large // buffer so we could be artificially slowing down the loop without the // backoff actually taking effect. We can validate that by ensuring this test // fails without the backoff code reliably. // // 100 + 500 milliseconds. 100 because the first retry will not happen until // the 100 + jitter milliseconds have elapsed. timeoutC := time.After(600 * time.Millisecond) OUT: for { select { case <-timeoutC: break OUT case u := <-ch: numErrors++ require.Error(u.Err) } } // Must be fewer than 10 failures in that time require.True(numErrors < 10, fmt.Sprintf("numErrors: %d", numErrors)) // Check the number of RPCs as a sanity check too actual := atomic.LoadUint32(&retries) require.True(actual < 10, fmt.Sprintf("actual: %d", actual)) }