Just like standard upstreams the order of applicability in descending precedence:
1. caller's `service-defaults` upstream override for destination
2. caller's `service-defaults` upstream defaults
3. destination's `service-resolver` ConnectTimeout
4. system default of 5s
Co-authored-by: mrspanishviking <kcardenas@hashicorp.com>
- `tls.incoming`: applies to the inbound mTLS targeting the public
listener on `connect-proxy` and `terminating-gateway` envoy instances
- `tls.outgoing`: applies to the outbound mTLS dialing upstreams from
`connect-proxy` and `ingress-gateway` envoy instances
Fixes#11966
Due to timing, a transparent proxy could have two upstreams to dial
directly with the same address.
For example:
- The orders service can dial upstreams shipping and payment directly.
- An instance of shipping at address 10.0.0.1 is deregistered.
- Payments is scaled up and scheduled to have address 10.0.0.1.
- The orders service receives the event for the new payments instance
before seeing the deregistration for the shipping instance. At this
point two upstreams have the same passthrough address and Envoy will
reject the listener configuration.
To disambiguate this commit considers the Raft index when storing
passthrough addresses. In the example above, 10.0.0.1 would only be
associated with the newer payments service instance.
Transparent proxies can set up filter chains that allow direct
connections to upstream service instances. Services that can be dialed
directly are stored in the PassthroughUpstreams map of the proxycfg
snapshot.
Previously these addresses were not being cleaned up based on new
service health data. The list of addresses associated with an upstream
service would only ever grow.
As services scale up and down, eventually they will have instances
assigned to an IP that was previously assigned to a different service.
When IP addresses are duplicated across filter chain match rules the
listener config will be rejected by Envoy.
This commit updates the proxycfg snapshot management so that passthrough
addresses can get cleaned up when no longer associated with a given
upstream.
There is still the possibility of a race condition here where due to
timing an address is shared between multiple passthrough upstreams.
That concern is mitigated by #12195, but will be further addressed
in a follow-up.
The gist here is that now we use a value-type struct proxycfg.UpstreamID
as the map key in ConfigSnapshot maps where we used to use "upstream
id-ish" strings. These are internal only and used just for bidirectional
trips through the agent cache keyspace (like the discovery chain target
struct).
For the few places where the upstream id needs to be projected into xDS,
that's what (proxycfg.UpstreamID).EnvoyID() is for. This lets us ALWAYS
inject the partition and namespace into these things without making
stuff like the golden testdata diverge.
* xds: refactor ingress listener SDS configuration
* xds: update resolveListenerSDS call args in listeners_test
* ingress: add TLS min, max and cipher suites to GatewayTLSConfig
* xds: implement envoyTLSVersions and envoyTLSCipherSuites
* xds: merge TLS config
* xds: configure TLS parameters with ingress TLS context from leaf
* xds: nil check in resolveListenerTLSConfig validation
* xds: nil check in makeTLSParameters* functions
* changelog: add entry for TLS params on ingress config entries
* xds: remove indirection for TLS params in TLSConfig structs
* xds: return tlsContext, nil instead of ambiguous err
Co-authored-by: Chris S. Kim <ckim@hashicorp.com>
* xds: switch zero checks to types.TLSVersionUnspecified
* ingress: add validation for ingress config entry TLS params
* ingress: validate listener TLS config
* xds: add basic ingress with TLS params tests
* xds: add ingress listeners mixed TLS min version defaults precedence test
* xds: add more explicit tests for ingress listeners inheriting gateway defaults
* xds: add test for single TLS listener on gateway without TLS defaults
* xds: regen golden files for TLSVersionInvalid zero value, add TLSVersionAuto listener test
* types/tls: change TLSVersion to string
* types/tls: update TLSCipherSuite to string type
* types/tls: implement validation functions for TLSVersion and TLSCipherSuites, make some maps private
* api: add TLS params to GatewayTLSConfig, add tests
* api: add TLSMinVersion to ingress gateway config entry test JSON
* xds: switch to Envoy TLS cipher suite encoding from types package
* xds: fixup validation for TLSv1_3 min version with cipher suites
* add some kitchen sink tests and add a missing struct tag
* xds: check if mergedCfg.TLSVersion is in TLSVersionsWithConfigurableCipherSuites
* xds: update connectTLSEnabled comment
* xds: remove unsued resolveGatewayServiceTLSConfig function
* xds: add makeCommonTLSContextFromLeafWithoutParams
* types/tls: add LessThan comparator function for concrete values
* types/tls: change tlsVersions validation map from string to TLSVersion keys
* types/tls: remove unused envoyTLSCipherSuites
* types/tls: enable chacha20 cipher suites for Consul agent
* types/tls: remove insecure cipher suites from allowed config
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 and TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 are both explicitly listed as insecure and disabled in the Go source.
Refs https://cs.opensource.google/go/go/+/refs/tags/go1.17.3:src/crypto/tls/cipher_suites.go;l=329-330
* types/tls: add ValidateConsulAgentCipherSuites function, make direct lookup map private
* types/tls: return all unmatched cipher suites in validation errors
* xds: check that Envoy API value matching TLS version is found when building TlsParameters
* types/tls: check that value is found in map before appending to slice in MarshalEnvoyTLSCipherSuiteStrings
* types/tls: cast to string rather than fmt.Printf in TLSCihperSuite.String()
* xds: add TLSVersionUnspecified to list of configurable cipher suites
* structs: update note about config entry warning
* xds: remove TLS min version cipher suite unconfigurable test placeholder
* types/tls: update tests to remove assumption about private map values
Co-authored-by: R.B. Boyer <rb@hashicorp.com>
Previously we could get into a state where discovery chain entries were
not cleaned up after the associated watch was cancelled. These changes
add handling for that case where stray chain references are encountered.
Previously SAN validation for prepared queries was broken because we
validated against the name, namespace, and datacenter for prepared
queries.
However, prepared queries can target:
- Services with a name that isn't their own
- Services in multiple datacenters
This means that the SpiffeID to validate needs to be based on the
prepared query endpoints, and not the prepared query's upstream
definition.
This commit updates prepared query clusters to account for that.
These changes ensure that the identity of services dialed is
cryptographically verified.
For all upstreams we validate against SPIFFE IDs in the format used by
Consul's service mesh:
spiffe://<trust-domain>/ns/<namespace>/dc/<datacenter>/svc/<service>
CatalogDestinationsOnly is a passthrough that would enable dialing
addresses outside of Consul's catalog. However, when this flag is set to
true only _connect_ endpoints for services can be dialed.
This flag is being renamed to signal that non-Connect endpoints can't be
dialed by transparent proxies when the value is set to true.
This adds support for the Incremental xDS protocol when using xDS v3. This is best reviewed commit-by-commit and will not be squashed when merged.
Union of all commit messages follows to give an overarching summary:
xds: exclusively support incremental xDS when using xDS v3
Attempts to use SoTW via v3 will fail, much like attempts to use incremental via v2 will fail.
Work around a strange older envoy behavior involving empty CDS responses over incremental xDS.
xds: various cleanups and refactors that don't strictly concern the addition of incremental xDS support
Dissolve the connectionInfo struct in favor of per-connection ResourceGenerators instead.
Do a better job of ensuring the xds code uses a well configured logger that accurately describes the connected client.
xds: pull out checkStreamACLs method in advance of a later commit
xds: rewrite SoTW xDS protocol tests to use protobufs rather than hand-rolled json strings
In the test we very lightly reuse some of the more boring protobuf construction helper code that is also technically under test. The important thing of the protocol tests is testing the protocol. The actual inputs and outputs are largely already handled by the xds golden output tests now so these protocol tests don't have to do double-duty.
This also updates the SoTW protocol test to exclusively use xDS v2 which is the only variant of SoTW that will be supported in Consul 1.10.
xds: default xds.Server.AuthCheckFrequency at use-time instead of construction-time
This config entry is being renamed primarily because in k8s the name
cluster could be confusing given that the config entry applies across
federated datacenters.
Additionally, this config entry will only apply to Consul as a service
mesh, so the more generic "cluster" name is not needed.
This PR replaces the original boolean used to configure transparent
proxy mode. It was replaced with a string mode that can be set to:
- "": Empty string is the default for when the setting should be
defaulted from other configuration like config entries.
- "direct": Direct mode is how applications originally opted into the
mesh. Proxy listeners need to be dialed directly.
- "transparent": Transparent mode enables configuring Envoy as a
transparent proxy. Traffic must be captured and redirected to the
inbound and outbound listeners.
This PR also adds a struct for transparent proxy specific configuration.
Initially this is not stored as a pointer. Will revisit that decision
before GA.
This is done because after removing ID and NodeName from
ServiceConfigRequest we will no longer know whether a request coming in
is for a Consul client earlier than v1.10.
Note that this does NOT upgrade to xDS v3. That will come in a future PR.
Additionally:
- Ignored staticcheck warnings about how github.com/golang/protobuf is deprecated.
- Shuffled some agent/xds imports in advance of a later xDS v3 upgrade.
- Remove support for envoy 1.13.x but don't add in 1.17.x yet. We have to wait until the xDS v3 support is added in a follow-up PR.
Fixes#8425
Co-authored-by: Matt Keeler <mkeeler@users.noreply.github.com>
Currently when passing hostname clusters to Envoy, we set each service instance registered with Consul as an LbEndpoint for the cluster.
However, Envoy can only handle one per cluster:
[2020-06-04 18:32:34.094][1][warning][config] [source/common/config/grpc_subscription_impl.cc:87] gRPC config for type.googleapis.com/envoy.api.v2.Cluster rejected: Error adding/updating cluster(s) dc2.internal.ddd90499-9b47-91c5-4616-c0cbf0fc358a.consul: LOGICAL_DNS clusters must have a single locality_lb_endpoint and a single lb_endpoint, server.dc2.consul: LOGICAL_DNS clusters must have a single locality_lb_endpoint and a single lb_endpoint
Envoy is currently handling this gracefully by only picking one of the endpoints. However, we should avoid passing multiple to avoid these warning logs.
This PR:
* Ensures we only pass one endpoint, which is tied to one service instance.
* We prefer sending an endpoint which is marked as Healthy by Consul.
* If no endpoints are healthy we emit a warning and skip the cluster.
* If multiple unique hostnames are spread across service instances we emit a warning and let the user know which will be resolved.
The DNS resolution will be handled by Envoy and defaults to LOGICAL_DNS. This discovery type can be overridden on a per-gateway basis with the envoy_dns_discovery_type Gateway Option.
If a service contains an instance with a hostname as an address we set the Envoy cluster to use DNS as the discovery type rather than EDS. Since both mesh gateways and terminating gateways route to clusters using SNI, whenever there is a mix of hostnames and IP addresses associated with a service we use the hostname + CDS rather than the IPs + EDS.
Note that we detect hostnames by attempting to parse the service instance's address as an IP. If it is not a valid IP we assume it is a hostname.
This commit adds the necessary changes to allow an ingress gateway to
route traffic from a single defined port to multiple different upstream
services in the Consul mesh.
To do this, we now require all HTTP requests coming into the ingress
gateway to specify a Host header that matches "<service-name>.*" in
order to correctly route traffic to the correct service.
- Differentiate multiple listener's route names by port
- Adds a case in xds for allowing default discovery chains to create a
route configuration when on an ingress gateway. This allows default
services to easily use host header routing
- ingress-gateways have a single route config for each listener
that utilizes domain matching to route to different services.
* Implements a simple, tcp ingress gateway workflow
This adds a new type of gateway for allowing Ingress traffic into Connect from external services.
Co-authored-by: Chris Piraino <cpiraino@hashicorp.com>
If a proxied service is a gRPC or HTTP2 service, but a path is exposed
using the HTTP1 or TCP protocol, Envoy should not be configured with
`http2ProtocolOptions` for the cluster backing the path.
A situation where this comes up is a gRPC service whose healthcheck or
metrics route (e.g. for Prometheus) is an HTTP1 service running on
a different port. Previously, if these were exposed either using
`Expose: { Checks: true }` or `Expose: { Paths: ... }`, Envoy would
still be configured to communicate with the path over HTTP2, which would
not work properly.
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
* xDS Mesh Gateway Resolver Subset Fixes
The first fix was that clusters were being generated for every service resolver subset regardless of there being any service instances of the associated service in that dc. The previous logic didn’t care at all but now it will omit generating those clusters unless we also have service instances that should be proxied.
The second fix was to respect the DefaultSubset of a service resolver so that mesh-gateways would configure the endpoints of the unnamed subset cluster to only those endpoints matched by the default subsets filters.
* Refactor the gateway endpoint generation to be a little easier to read
* Adds 'limits' field to the upstream configuration of a connect proxy
This allows a user to configure the envoy connect proxy with
'max_connections', 'max_queued_requests', and 'max_concurrent_requests'. These
values are defined in the local proxy on a per-service instance basis
and should thus NOT be thought of as a global-level or even service-level value.
Fixes: #5396
This PR adds a proxy configuration stanza called expose. These flags register
listeners in Connect sidecar proxies to allow requests to specific HTTP paths from outside of the node. This allows services to protect themselves by only
listening on the loopback interface, while still accepting traffic from non
Connect-enabled services.
Under expose there is a boolean checks flag that would automatically expose all
registered HTTP and gRPC check paths.
This stanza also accepts a paths list to expose individual paths. The primary
use case for this functionality would be to expose paths for third parties like
Prometheus or the kubelet.
Listeners for requests to exposed paths are be configured dynamically at run
time. Any time a proxy, or check can be registered, a listener can also be
created.
In this initial implementation requests to these paths are not
authenticated/encrypted.
- Bootstrap escape hatches are OK.
- Public listener/cluster escape hatches are OK.
- Upstream listener/cluster escape hatches are not supported.
If an unsupported escape hatch is configured and the discovery chain is
activated log a warning and act like it was not configured.
Fixes#6160
Compiling this will set an optional SNI field on each DiscoveryTarget.
When set this value should be used for TLS connections to the instances
of the target. If not set the default should be used.
Setting ExternalSNI will disable mesh gateway use for that target. It also
disables several service-resolver features that do not make sense for an
external service.
Failover is pushed entirely down to the data plane by creating envoy
clusters and putting each successive destination in a different load
assignment priority band. For example this shows that normally requests
go to 1.2.3.4:8080 but when that fails they go to 6.7.8.9:8080:
- name: foo
load_assignment:
cluster_name: foo
policy:
overprovisioning_factor: 100000
endpoints:
- priority: 0
lb_endpoints:
- endpoint:
address:
socket_address:
address: 1.2.3.4
port_value: 8080
- priority: 1
lb_endpoints:
- endpoint:
address:
socket_address:
address: 6.7.8.9
port_value: 8080
Mesh gateways route requests based solely on the SNI header tacked onto
the TLS layer. Envoy currently only lets you configure the outbound SNI
header at the cluster layer.
If you try to failover through a mesh gateway you ideally would
configure the SNI value per endpoint, but that's not possible in envoy
today.
This PR introduces a simpler way around the problem for now:
1. We identify any target of failover that will use mesh gateway mode local or
remote and then further isolate any resolver node in the compiled discovery
chain that has a failover destination set to one of those targets.
2. For each of these resolvers we will perform a small measurement of
comparative healths of the endpoints that come back from the health API for the
set of primary target and serial failover targets. We walk the list of targets
in order and if any endpoint is healthy we return that target, otherwise we
move on to the next target.
3. The CDS and EDS endpoints both perform the measurements in (2) for the
affected resolver nodes.
4. For CDS this measurement selects which TLS SNI field to use for the cluster
(note the cluster is always going to be named for the primary target)
5. For EDS this measurement selects which set of endpoints will populate the
cluster. Priority tiered failover is ignored.
One of the big downsides to this approach to failover is that the failover
detection and correction is going to be controlled by consul rather than
deferring that entirely to the data plane as with the prior version. This also
means that we are bound to only failover using official health signals and
cannot make use of data plane signals like outlier detection to affect
failover.
In this specific scenario the lack of data plane signals is ok because the
effectiveness is already muted by the fact that the ultimate destination
endpoints will have their data plane signals scrambled when they pass through
the mesh gateway wrapper anyway so we're not losing much.
Another related fix is that we now use the endpoint health from the
underlying service, not the health of the gateway (regardless of
failover mode).
In addition to exposing compilation over the API cleaned up the structures that would be exchanged to be cleaner and easier to support and understand.
Also removed ability to configure the envoy OverprovisioningFactor.
This should make them better for sending over RPC or the API.
Instead of a chain implemented explicitly like a linked list (nodes
holding pointers to other nodes) instead switch to a flat map of named
nodes with nodes linking other other nodes by name. The shipped
structure is just a map and a string to indicate which key to start
from.
Other changes:
* inline the compiler option InferDefaults as true
* introduce compiled target config to avoid needing to send back
additional maps of Resolvers; future target-specific compiled state
can go here
* move compiled MeshGateway out of the Resolver and into the
TargetConfig where it makes more sense.
* connect: reconcile how upstream configuration works with discovery chains
The following upstream config fields for connect sidecars sanely
integrate into discovery chain resolution:
- Destination Namespace/Datacenter: Compilation occurs locally but using
different default values for namespaces and datacenters. The xDS
clusters that are created are named as they normally would be.
- Mesh Gateway Mode (single upstream): If set this value overrides any
value computed for any resolver for the entire discovery chain. The xDS
clusters that are created may be named differently (see below).
- Mesh Gateway Mode (whole sidecar): If set this value overrides any
value computed for any resolver for the entire discovery chain. If this
is specifically overridden for a single upstream this value is ignored
in that case. The xDS clusters that are created may be named differently
(see below).
- Protocol (in opaque config): If set this value overrides the value
computed when evaluating the entire discovery chain. If the normal chain
would be TCP or if this override is set to TCP then the result is that
we explicitly disable L7 Routing and Splitting. The xDS clusters that
are created may be named differently (see below).
- Connect Timeout (in opaque config): If set this value overrides the
value for any resolver in the entire discovery chain. The xDS clusters
that are created may be named differently (see below).
If any of the above overrides affect the actual result of compiling the
discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op
override to "tcp") then the relevant parameters are hashed and provided
to the xDS layer as a prefix for use in naming the Clusters. This is to
ensure that if one Upstream discovery chain has no overrides and
tangentially needs a cluster named "api.default.XXX", and another
Upstream does have overrides for "api.default.XXX" that they won't
cross-pollinate against the operator's wishes.
Fixes#6159
* Make cluster names SNI always
* Update some tests
* Ensure we check for prepared query types
* Use sni for route cluster names
* Proper mesh gateway mode defaulting when the discovery chain is used
* Ignore service splits from PatchSliceOfMaps
* Update some xds golden files for proper test output
* Allow for grpc/http listeners/cluster configs with the disco chain
* Update stats expectation
The clusters/endpoints test were still relying on deterministic ordering of clusters/endpoints which cannot be relied upon due to golang purposefully not providing any guarantee about consistent interation ordering of maps.
Also fixed a small bug in the connect proxy cluster generation that was causing the clusters slice to be double the size it needed to with the first half being all nil pointers.