Mesh gateways can use hostnames in their tagged addresses (#7999). This is useful
if you were to expose a mesh gateway using a cloud networking load balancer appliance
that gives you a DNS name but no reliable static IPs.
Envoy cannot accept hostnames via EDS and those must be configured using CDS.
There was already logic when configuring gateways in other locations in the code, but
given the illusions in play for peering the downstream of a peered service wasn't aware
that it should be doing that.
Also:
- ensuring that we always try to use wan-like addresses to cross peer boundaries.
Envoy's SPIFFE certificate validation extension allows for us to
validate against different root certificates depending on the trust
domain of the dialing proxy.
If there are any trust bundles from peers in the config snapshot then we
use the SPIFFE validator as the validation context, rather than the
usual TrustedCA.
The injected validation config includes the local root certificates as
well.
For mTLS to work between two proxies in peered clusters with different root CAs,
proxies need to configure their outbound listener to use different root certificates
for validation.
Up until peering was introduced proxies would only ever use one set of root certificates
to validate all mesh traffic, both inbound and outbound. Now an upstream proxy
may have a leaf certificate signed by a CA that's different from the dialing proxy's.
This PR makes changes to proxycfg and xds so that the upstream TLS validation
uses different root certificates depending on which cluster is being dialed.
This is the OSS portion of enterprise PRs 1904, 1905, 1906, 1907, 1949,
and 1971.
It replaces the proxycfg manager's direct dependency on the agent cache
with interfaces that will be implemented differently when serving xDS
sessions from a Consul server.
OSS portion of enterprise PR 1857.
This removes (most) references to the `cache.UpdateEvent` type in the
`proxycfg` package.
As we're going to be direct usage of the agent cache with interfaces that
can be satisfied by alternative server-local datasources, it doesn't make
sense to depend on this type everywhere anymore (particularly on the
`state.ch` channel).
We also plan to extract `proxycfg` out of Consul into a shared library in
the future, which would require removing this dependency.
Aside from a fairly rote find-and-replace, the main change is that the
`cache.Cache` and `health.Client` types now accept a callback function
parameter, rather than a `chan<- cache.UpdateEvents`. This allows us to
do the type conversion without running another goroutine.
Just like standard upstreams the order of applicability in descending precedence:
1. caller's `service-defaults` upstream override for destination
2. caller's `service-defaults` upstream defaults
3. destination's `service-resolver` ConnectTimeout
4. system default of 5s
Co-authored-by: mrspanishviking <kcardenas@hashicorp.com>
- `tls.incoming`: applies to the inbound mTLS targeting the public
listener on `connect-proxy` and `terminating-gateway` envoy instances
- `tls.outgoing`: applies to the outbound mTLS dialing upstreams from
`connect-proxy` and `ingress-gateway` envoy instances
Fixes#11966
Due to timing, a transparent proxy could have two upstreams to dial
directly with the same address.
For example:
- The orders service can dial upstreams shipping and payment directly.
- An instance of shipping at address 10.0.0.1 is deregistered.
- Payments is scaled up and scheduled to have address 10.0.0.1.
- The orders service receives the event for the new payments instance
before seeing the deregistration for the shipping instance. At this
point two upstreams have the same passthrough address and Envoy will
reject the listener configuration.
To disambiguate this commit considers the Raft index when storing
passthrough addresses. In the example above, 10.0.0.1 would only be
associated with the newer payments service instance.
Transparent proxies can set up filter chains that allow direct
connections to upstream service instances. Services that can be dialed
directly are stored in the PassthroughUpstreams map of the proxycfg
snapshot.
Previously these addresses were not being cleaned up based on new
service health data. The list of addresses associated with an upstream
service would only ever grow.
As services scale up and down, eventually they will have instances
assigned to an IP that was previously assigned to a different service.
When IP addresses are duplicated across filter chain match rules the
listener config will be rejected by Envoy.
This commit updates the proxycfg snapshot management so that passthrough
addresses can get cleaned up when no longer associated with a given
upstream.
There is still the possibility of a race condition here where due to
timing an address is shared between multiple passthrough upstreams.
That concern is mitigated by #12195, but will be further addressed
in a follow-up.
The gist here is that now we use a value-type struct proxycfg.UpstreamID
as the map key in ConfigSnapshot maps where we used to use "upstream
id-ish" strings. These are internal only and used just for bidirectional
trips through the agent cache keyspace (like the discovery chain target
struct).
For the few places where the upstream id needs to be projected into xDS,
that's what (proxycfg.UpstreamID).EnvoyID() is for. This lets us ALWAYS
inject the partition and namespace into these things without making
stuff like the golden testdata diverge.
These methods only called a single function. Wrappers like this end up making code harder to read
because it adds extra ways of doing things.
We already have many helper functions for constructing these types, we don't need additional methods.
There is no interaction between these handlers, so splitting them into separate files
makes it easier to discover the full implementation of each kindHandler.