* Remove unused are hosts set check
* Remove all traces of unused 'AreHostsSet' parameter
* Remove unused Hosts attribute
* Remove commented out use of snap.APIGateway.Hosts
* Refactored "NewGatewayService" to handle namespaces, fixed
TestHTTPRouteFlattening test
* Fixed existing http_route tests for namespacing
* Squash aclEnterpriseMeta for ResourceRefs and HTTPServices, accept
namespace for creating connect services and regular services
* Use require instead of assert after creating namespaces in
http_route_tests
* Refactor NewConnectService and NewGatewayService functions to use cfg
objects to reduce number of method args
* Rename field on SidecarConfig in tests from `SidecarServiceName` to
`Name` to avoid stutter
This commit fixes an issue where trust bundles could not be read
by services in a non-default namespace, unless they had excessive
ACL permissions given to them.
Prior to this change, `service:write` was required in the default
namespace in order to read the trust bundle. Now, `service:write`
to a service in any namespace is sufficient.
If a CA config update did not cause a root change, the codepath would return early and skip some steps which preserve its intermediate certificates and signing key ID. This commit re-orders some code and prevents updates from generating new intermediate certificates.
This commit adds a sameness-group config entry to the API and structs packages. It includes some validation logic and a new memdb index that tracks the default sameness-group for each partition. Sameness groups will simplify the effort of managing failovers / intentions / exports for peers and partitions.
Note that this change purely to introduce the configuration entry and does not include the full functionality of sameness-groups.
Co-authored-by: Ashvitha Sridharan <ashvitha.sridharan@hashicorp.com>
Co-authored-by: Freddy <freddygv@users.noreply.github.com>
Add a new envoy flag: "envoy_hcp_metrics_bind_socket_dir", a directory
where a unix socket will be created with the name
`<namespace>_<proxy_id>.sock` to forward Envoy metrics.
If set, this will configure:
- In bootstrap configuration a local stats_sink and static cluster.
These will forward metrics to a loopback listener sent over xDS.
- A dynamic listener listening at the socket path that the previously
defined static cluster is sending metrics to.
- A dynamic cluster that will forward traffic received at this listener
to the hcp-metrics-collector service.
Reasons for having a static cluster pointing at a dynamic listener:
- We want to secure the metrics stream using TLS, but the stats sink can
only be defined in bootstrap config. With dynamic listeners/clusters
we can use the proxy's leaf certificate issued by the Connect CA,
which isn't available at bootstrap time.
- We want to intelligently route to the HCP collector. Configuring its
addreess at bootstrap time limits our flexibility routing-wise. More
on this below.
Reasons for defining the collector as an upstream in `proxycfg`:
- The HCP collector will be deployed as a mesh service.
- Certificate management is taken care of, as mentioned above.
- Service discovery and routing logic is automatically taken care of,
meaning that no code changes are required in the xds package.
- Custom routing rules can be added for the collector using discovery
chain config entries. Initially the collector is expected to be
deployed to each admin partition, but in the future could be deployed
centrally in the default partition. These config entries could even be
managed by HCP itself.
Add support for using existing vault auto-auth configurations as the
provider configuration when using Vault's CA provider with AliCloud.
AliCloud requires 2 extra fields to enable it to use STS (it's preferred
auth setup). Our vault-plugin-auth-alicloud package contained a method
to help generate them as they require you to make an http call to
a faked endpoint proxy to get them (url and headers base64 encoded).
Receiving an "acl not found" error from an RPC in the agent cache and the
streaming/event components will cause any request loops to cease under the
assumption that they will never work again if the token was destroyed. This
prevents log spam (#14144, #9738).
Unfortunately due to things like:
- authz requests going to stale servers that may not have witnessed the token
creation yet
- authz requests in a secondary datacenter happening before the tokens get
replicated to that datacenter
- authz requests from a primary TO a secondary datacenter happening before the
tokens get replicated to that datacenter
The caller will get an "acl not found" *before* the token exists, rather than
just after. The machinery added above in the linked PRs will kick in and
prevent the request loop from looping around again once the tokens actually
exist.
For `consul-dataplane` usages, where xDS is served by the Consul servers
rather than the clients ultimately this is not a problem because in that
scenario the `agent/proxycfg` machinery is on-demand and launched by a new xDS
stream needing data for a specific service in the catalog. If the watching
goroutines are terminated it ripples down and terminates the xDS stream, which
CDP will eventually re-establish and restart everything.
For Consul client usages, the `agent/proxycfg` machinery is ahead-of-time
launched at service registration time (called "local" in some of the proxycfg
machinery) so when the xDS stream comes in the data is already ready to go. If
the watching goroutines terminate it should terminate the xDS stream, but
there's no mechanism to re-spawn the watching goroutines. If the xDS stream
reconnects it will see no `ConfigSnapshot` and will not get one again until
the client agent is restarted, or the service is re-registered with something
changed in it.
This PR fixes a few things in the machinery:
- there was an inadvertent deadlock in fetching snapshot from the proxycfg
machinery by xDS, such that when the watching goroutine terminated the
snapshots would never be fetched. This caused some of the xDS machinery to
get indefinitely paused and not finish the teardown properly.
- Every 30s we now attempt to re-insert all locally registered services into
the proxycfg machinery.
- When services are re-inserted into the proxycfg machinery we special case
"dead" ones such that we unilaterally replace them rather that doing that
conditionally.
Adds support for the approle auth-method. Only handles using the approle
role/secret to auth and it doesn't support the agent's extra management
configuration options (wrap and delete after read) as they are not
required as part of the auth (ie. they are vault agent things).
* Fix issue where terminating gateway service resolvers weren't properly cleaned up
* Add integration test for cleaning up resolvers
* Add changelog entry
* Use state test and drop integration test
* Leverage ServiceResolver ConnectTimeout for route timeouts to make TerminatingGateway upstream timeouts configurable
* Regenerate golden files
* Add RequestTimeout field
* Add changelog entry
Adds support for a jwt token in a file. Simply reads the file and sends
the read in jwt along to the vault login.
It also supports a legacy mode with the jwt string being passed
directly. In which case the path is made optional.
Does the required dance with the local HTTP endpoint to get the required
data for the jwt based auth setup in Azure. Keeps support for 'legacy'
mode where all login data is passed on via the auth methods parameters.
Refactored check for hardcoded /login fields.
Registering gRPC balancers is thread-unsafe because they are stored in a
global map variable that is accessed without holding a lock. Therefore,
it's expected that balancers are registered _once_ at the beginning of
your program (e.g. in a package `init` function) and certainly not after
you've started dialing connections, etc.
> NOTE: this function must only be called during initialization time
> (i.e. in an init() function), and is not thread-safe.
While this is fine for us in production, it's challenging for tests that
spin up multiple agents in-memory. We currently register a balancer per-
agent which holds agent-specific state that cannot safely be shared.
This commit introduces our own registry that _is_ thread-safe, and
implements the Builder interface such that we can call gRPC's `Register`
method once, on start-up. It uses the same pattern as our resolver
registry where we use the dial target's host (aka "authority"), which is
unique per-agent, to determine which builder to use.
Prior to this commit, all peer services were transmitted as connect-enabled
as long as a one or more mesh-gateways were healthy. With this change, there
is now a difference between typical services and connect services transmitted
via peering.
A service will be reported as "connect-enabled" as long as any of these
conditions are met:
1. a connect-proxy sidecar is registered for the service name.
2. a connect-native instance of the service is registered.
3. a service resolver / splitter / router is registered for the service name.
4. a terminating gateway has registered the service.