* remove v2 tenancy, catalog, and mesh
- Inline the v2tenancy experiment to false
- Inline the resource-apis experiment to false
- Inline the hcp-v2-resource-apis experiment to false
- Remove ACL policy templates and rule language changes related to
workload identities (a v2-only concept) (e.g. identity and
identity_prefix)
- Update the gRPC endpoint used by consul-dataplane to no longer respond
specially for v2
- Remove stray v2 references scattered throughout the DNS v1.5 newer
implementation.
* changelog
* go mod tidy on consul containers
* lint fixes from ENT
---------
Co-authored-by: John Murret <john.murret@hashicorp.com>
* Panic when controllers attempt to make invalid requests to the resource service
This will help to catch bugs in tests that could cause infinite errors to be emitted.
* Disable the API GW v2 controller
With the previous commit, this would cause a server to panic due to watching a type which has not yet been created/registered.
* Ensure that a test server gets the full type registry instead of constructing its own
* Skip TestServer_ControllerDependencies
* Fix peering tests so that they use the full resource registry.
* Increase timeouts for flakey peering test.
* Various test fixes.
* Fix race condition in reconcilePeering.
This resolves an issue where a peering object in the state store was
incorrectly mutated by a function, resulting in the test being flagged as
failing when the -race flag was used.
Prior to the introduction of this configuration, grpc keepalive messages were
sent after 2 hours of inactivity on the stream. This posed issues in various
scenarios where the server-side xds connection balancing was unaware that envoy
instances were uncleanly killed / force-closed, since the connections would
only be cleaned up after ~5 minutes of TCP timeouts occurred. Setting this
config to a 30 second interval with a 20 second timeout ensures that at most,
it should take up to 50 seconds for a dead xds connection to be closed.
* Adding explicit MPL license for sub-package
This directory and its subdirectories (packages) contain files licensed with the MPLv2 `LICENSE` file in this directory and are intentionally licensed separately from the BSL `LICENSE` file at the root of this repository.
* Adding explicit MPL license for sub-package
This directory and its subdirectories (packages) contain files licensed with the MPLv2 `LICENSE` file in this directory and are intentionally licensed separately from the BSL `LICENSE` file at the root of this repository.
* Updating the license from MPL to Business Source License
Going forward, this project will be licensed under the Business Source License v1.1. Please see our blog post for more details at <Blog URL>, FAQ at www.hashicorp.com/licensing-faq, and details of the license at www.hashicorp.com/bsl.
* add missing license headers
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
---------
Co-authored-by: hashicorp-copywrite[bot] <110428419+hashicorp-copywrite[bot]@users.noreply.github.com>
The grpc resolver implementation is fed from changes to the
router.Router. Within the router there is a map of various areas storing
the addressing information for servers in those areas. All map entries
are of the WAN variety except a single special entry for the LAN.
Addressing information in the LAN "area" are local addresses intended
for use when making a client-to-server or server-to-server request.
The client agent correctly updates this LAN area when receiving lan serf
events, so by extension the grpc resolver works fine in that scenario.
The server agent only initially populates a single entry in the LAN area
(for itself) on startup, and then never mutates that area map again.
For normal RPCs a different structure is used for LAN routing.
Additionally when selecting a server to contact in the local datacenter
it will randomly select addresses from either the LAN or WAN addressed
entries in the map.
Unfortunately this means that the grpc resolver stack as it exists on
server agents is either broken or only accidentally functions by having
servers dial each other over the WAN-accessible address. If the operator
disables the serf wan port completely likely this incidental functioning
would break.
This PR enforces that local requests for servers (both for stale reads
or leader forwarded requests) exclusively use the LAN "area" information
and also fixes it so that servers keep that area up to date in the
router.
A test for the grpc resolver logic was added, as well as a higher level
full-stack test to ensure the externally perceived bug does not return.
Registering gRPC balancers is thread-unsafe because they are stored in a
global map variable that is accessed without holding a lock. Therefore,
it's expected that balancers are registered _once_ at the beginning of
your program (e.g. in a package `init` function) and certainly not after
you've started dialing connections, etc.
> NOTE: this function must only be called during initialization time
> (i.e. in an init() function), and is not thread-safe.
While this is fine for us in production, it's challenging for tests that
spin up multiple agents in-memory. We currently register a balancer per-
agent which holds agent-specific state that cannot safely be shared.
This commit introduces our own registry that _is_ thread-safe, and
implements the Builder interface such that we can call gRPC's `Register`
method once, on start-up. It uses the same pattern as our resolver
registry where we use the dial target's host (aka "authority"), which is
unique per-agent, to determine which builder to use.
Protobuf Refactoring for Multi-Module Cleanliness
This commit includes the following:
Moves all packages that were within proto/ to proto/private
Rewrites imports to account for the packages being moved
Adds in buf.work.yaml to enable buf workspaces
Names the proto-public buf module so that we can override the Go package imports within proto/buf.yaml
Bumps the buf version dependency to 1.14.0 (I was trying out the version to see if it would get around an issue - it didn't but it also doesn't break things and it seemed best to keep up with the toolchain changes)
Why:
In the future we will need to consume other protobuf dependencies such as the Google HTTP annotations for openapi generation or grpc-gateway usage.
There were some recent changes to have our own ratelimiting annotations.
The two combined were not working when I was trying to use them together (attempting to rebase another branch)
Buf workspaces should be the solution to the problem
Buf workspaces means that each module will have generated Go code that embeds proto file names relative to the proto dir and not the top level repo root.
This resulted in proto file name conflicts in the Go global protobuf type registry.
The solution to that was to add in a private/ directory into the path within the proto/ directory.
That then required rewriting all the imports.
Is this safe?
AFAICT yes
The gRPC wire protocol doesn't seem to care about the proto file names (although the Go grpc code does tack on the proto file name as Metadata in the ServiceDesc)
Other than imports, there were no changes to any generated code as a result of this.
Enforce lowercase peer names.
Prior to this change peer names could be mixed case.
This can cause issues, as peer names are used as DNS labels
in various locations. It also caused issues with envoy
configuration.
This is the OSS portion of enterprise PR 3822.
Adds a custom gRPC balancer that replicates the router's server cycling
behavior. Also enables automatic retries for RESOURCE_EXHAUSTED errors,
which we now get for free.
* Rate limiting handler - ensure configuration has changed before modifying limiters
* Updating test to validate arguments to UpdateConfig
* Removing duplicate test. Updating mock.
* Renaming NullRateLimiter to NullRequestLimitsHandler
* Rate Limit Handler - ensure rate limiting is not in the code path when not configured
* Update agent/consul/rate/handler.go
Co-authored-by: Dhia Ayachi <dhia@hashicorp.com>
* formatting handler.go
* Rate limiting handler - ensure configuration has changed before modifying limiters
* Updating test to validate arguments to UpdateConfig
* Removing duplicate test. Updating mock.
* adding logging for when UpdateConfig is called but the config has not changed.
* Update agent/consul/rate/handler.go
Co-authored-by: Dhia Ayachi <dhia@hashicorp.com>
* Update agent/consul/rate/handler_test.go
Co-authored-by: Dan Upton <daniel@floppy.co>
* modifying existing variable name based on pr feedback
* updating a broken merge conflict;
Co-authored-by: Dhia Ayachi <dhia@hashicorp.com>
Co-authored-by: Dan Upton <daniel@floppy.co>
* server: add placeholder glue for rate limit handler
This commit adds a no-op implementation of the rate-limit handler and
adds it to the `consul.Server` struct and setup code.
This allows us to start working on the net/rpc and gRPC interceptors and
config logic.
* Add handler errors
* Set the global read and write limits
* fixing multilimiter moving packages
* Fix typo
* Simplify globalLimit usage
* add multilimiter and tests
* exporting LimitedEntity
* Apply suggestions from code review
Co-authored-by: John Murret <john.murret@hashicorp.com>
* add config update and rename config params
* add doc string and split config
* Apply suggestions from code review
Co-authored-by: Dan Upton <daniel@floppy.co>
* use timer to avoid go routine leak and change the interface
* add comments to tests
* fix failing test
* add prefix with config edge, refactor tests
* Apply suggestions from code review
Co-authored-by: Dan Upton <daniel@floppy.co>
* refactor to apply configs for limiters under a prefix
* add fuzz tests and fix bugs found. Refactor reconcile loop to have a simpler logic
* make KeyType an exported type
* split the config and limiter trees to fix race conditions in config update
* rename variables
* fix race in test and remove dead code
* fix reconcile loop to not create a timer on each loop
* add extra benchmark tests and fix tests
* fix benchmark test to pass value to func
* server: add placeholder glue for rate limit handler
This commit adds a no-op implementation of the rate-limit handler and
adds it to the `consul.Server` struct and setup code.
This allows us to start working on the net/rpc and gRPC interceptors and
config logic.
* Set the global read and write limits
* fixing multilimiter moving packages
* add server configuration for global rate limiting.
* remove agent test
* remove added stuff from handler
* remove added stuff from multilimiter
* removing unnecessary TODOs
* Removing TODO comment from handler
* adding in defaulting to infinite
* add disabled status in there
* adding in documentation for disabled mode.
* make disabled the default.
* Add mock and agent test
* addig documentation and missing mock file.
* Fixing test TestLoad_IntegrationWithFlags
* updating docs based on PR feedback.
* Updating Request Limits mode to use int based on PR feedback.
* Adding RequestLimits struct so we have a nested struct in ReloadableConfig.
* fixing linting references
* Update agent/consul/rate/handler.go
Co-authored-by: Dan Upton <daniel@floppy.co>
* Update agent/consul/config.go
Co-authored-by: Dan Upton <daniel@floppy.co>
* removing the ignore of the request limits in JSON. addingbuilder logic to convert any read rate or write rate less than 0 to rate.Inf
* added conversion function to convert request limits object to handler config.
* Updating docs to reflect gRPC and RPC are rate limit and as a result, HTTP requests are as well.
* Updating values for TestLoad_FullConfig() so that they were different and discernable.
* Updating TestRuntimeConfig_Sanitize
* Fixing TestLoad_IntegrationWithFlags test
* putting nil check in place
* fixing rebase
* removing change for missing error checks. will put in another PR
* Rebasing after default multilimiter config change
* resolving rebase issues
* updating reference for incomingRPCLimiter to use interface
* updating interface
* Updating interfaces
* Fixing mock reference
Co-authored-by: Daniel Upton <daniel@floppy.co>
Co-authored-by: Dhia Ayachi <dhia@hashicorp.com>
Implements the gRPC middleware for rate-limiting as a tap.ServerInHandle
function (executed before the request is unmarshaled).
Mappings between gRPC methods and their operation type are generated by
a protoc plugin introduced by #15564.
* update go version to 1.18 for api and sdk, go mod tidy
* removes ioutil usage everywhere which was deprecated in go1.16 in favour of io and os packages. Also introduces a lint rule which forbids use of ioutil going forward.
Co-authored-by: R.B. Boyer <4903+rboyer@users.noreply.github.com>
Re-add ServerExternalAddresses parameter in GenerateToken endpoint
This reverts commit 5e156772f6
and adds extra functionality to support newer peering behaviors.
* Regenerate golden files.
* Backport from ENT: "Avoid race"
Original commit: 5006c8c858b0e332be95271ef9ba35122453315b
Original author: freddygv
* Backport from ENT: "chore: fix flake peerstream test"
Original commit: b74097e7135eca48cc289798c5739f9ef72c0cc8
Original author: DanStough
This commit updates the establish endpoint to bubble up a 403 status
code to callers when the establishment secret from the token is invalid.
This is a signal that a new peering token must be generated.
When peering through mesh gateways we expect outbound dials to peer
servers to flow through the local mesh gateway addresses.
Now when establishing a peering we get a list of dial addresses as a
ring buffer that includes local mesh gateway addresses if the local DC
is configured to peer through mesh gateways. The ring buffer includes
the mesh gateway addresses first, but also includes the remote server
addresses as a fallback.
This fallback is present because it's possible that direct egress from
the servers may be allowed. If not allowed then the leader will cycle
back to a mesh gateway address through the ring.
When attempting to dial the remote servers we retry up to a fixed
timeout. If using mesh gateways we also have an initial wait in
order to allow for the mesh gateways to configure themselves.
Note that if we encounter a permission denied error we do not retry
since that error indicates that the secret in the peering token is
invalid.
* Move stats.go from grpc-internal to grpc-middleware
* Update grpc server metrics with server type label
* Add stats test to grpc-external
* Remove global metrics instance from grpc server tests
A previous commit introduced an internally-managed server certificate
to use for peering-related purposes.
Now the peering token has been updated to match that behavior:
- The server name matches the structure of the server cert
- The CA PEMs correspond to the Connect CA
Note that if Conect is disabled, and by extension the Connect CA, we
fall back to the previous behavior of returning the manually configured
certs and local server SNI.
Several tests were updated to use the gRPC TLS port since they enable
Connect by default. This means that the peering token will embed the
Connect CA, and the dialer will expect a TLS listener.
Prior to #13244, connect proxies and gateways could only be configured by an
xDS session served by the local client agent.
In an upcoming release, it will be possible to deploy a Consul service mesh
without client agents. In this model, xDS sessions will be handled by the
servers themselves, which necessitates load-balancing to prevent a single
server from receiving a disproportionate amount of load and becoming
overwhelmed.
This introduces a simple form of load-balancing where Consul will attempt to
achieve an even spread of load (xDS sessions) between all healthy servers.
It does so by implementing a concurrent session limiter (limiter.SessionLimiter)
and adjusting the limit according to autopilot state and proxy service
registrations in the catalog.
If a server is already over capacity (i.e. the session limit is lowered),
Consul will begin draining sessions to rebalance the load. This will result
in the client receiving a `RESOURCE_EXHAUSTED` status code. It is the client's
responsibility to observe this response and reconnect to a different server.
Users of the gRPC client connection brokered by the
consul-server-connection-manager library will get this for free.
The rate at which Consul will drain sessions to rebalance load is scaled
dynamically based on the number of proxies in the catalog.
Peerings are terminated when a peer decides to delete the peering from
their end. Deleting a peering sends a termination message to the peer
and triggers them to mark the peering as terminated but does NOT delete
the peering itself. This is to prevent peerings from disappearing from
both sides just because one side deleted them.
Previously the Delete endpoint was skipping the deletion if the peering
was not marked as active. However, terminated peerings are also
inactive.
This PR makes some updates so that peerings marked as terminated can be
deleted by users.
* defaulting to false because peering will be released as beta
* Ignore peering disabled error in bundles cachetype
Co-authored-by: Matt Keeler <mkeeler@users.noreply.github.com>
Co-authored-by: freddygv <freddy@hashicorp.com>
Co-authored-by: Matt Keeler <mjkeeler7@gmail.com>
Update generate token endpoint (rpc, http, and api module)
If ServerExternalAddresses are set, it will override any addresses gotten from the "consul" service, and be used in the token instead, and dialed by the dialer. This allows for setting up a load balancer for example, in front of the consul servers.