This will behave the way we handle SNI and SPIFFE IDs, where the default
partition is excluded.
Excluding the default ensures that don't attempt to compare default.dc2
to dc2 in OSS.
This commit updates mesh gateway watches for cross-partitions
communication.
* Mesh gateways are keyed by partition and datacenter.
* Mesh gateways will now watch gateways in partitions that export
services to their partition.
* Mesh gateways in non-default partitions will not have cross-datacenter
watches. They are not involved in traditional WAN federation.
Previously the datacenter of the gateway was the key identifier, now it
is the datacenter and partition.
When dialing services in other partitions or datacenters we now watch
the appropriate partition.
This commit extracts all the kind-specific logic into handler types, and
keeps the generic parts on the state struct. This change should make it
easier to add new kinds, and see the implementation of each kind more
clearly.
context.Context should never be stored on a struct (as it says in the godoc) because it is easy to
to end up with the wrong context when it is stored.
Also see https://blog.golang.org/context-and-structs
This change is also in preparation for splitting state into kind-specific handlers so that the
implementation of each kind is grouped together.
Co-authored-by: R.B. Boyer <4903+rboyer@users.noreply.github.com>
Previously we would associate the address of a discovery chain target
with the discovery chain's filter chain. This was broken for a few reasons:
- If the upstream is a virtual service, the client proxy has no way of
dialing it because virtual services are not targets of their discovery
chains. The targets are distinct services. This is addressed by watching
the endpoints of all upstream services, not just their discovery chain
targets.
- If multiple discovery chains resolve to the same target, that would
lead to multiple filter chains attempting to match on the target's
virtual IP. This is addressed by only matching on the upstream's virtual
IP.
NOTE: this implementation requires an intention to the redirecting
virtual service and not just to the final destination. This is how
we can know that the virtual service is an upstream to watch.
A later PR will look into traversing discovery chains when computing
upstreams so that intentions are only required to the discovery chain
targets.
No config entry needs a Kind field. It is only used to determine the Go type to
target. As we introduce new config entries (like this one) we can remove the kind field
and have the GetKind method return the single supported value.
In this case (similar to proxy-defaults) the Name field is also unnecessary. We always
use the same value. So we can omit the name field entirely.
This config entry is being renamed primarily because in k8s the name
cluster could be confusing given that the config entry applies across
federated datacenters.
Additionally, this config entry will only apply to Consul as a service
mesh, so the more generic "cluster" name is not needed.
This PR replaces the original boolean used to configure transparent
proxy mode. It was replaced with a string mode that can be set to:
- "": Empty string is the default for when the setting should be
defaulted from other configuration like config entries.
- "direct": Direct mode is how applications originally opted into the
mesh. Proxy listeners need to be dialed directly.
- "transparent": Transparent mode enables configuring Envoy as a
transparent proxy. Traffic must be captured and redirected to the
inbound and outbound listeners.
This PR also adds a struct for transparent proxy specific configuration.
Initially this is not stored as a pointer. Will revisit that decision
before GA.
The DNS resolution will be handled by Envoy and defaults to LOGICAL_DNS. This discovery type can be overridden on a per-gateway basis with the envoy_dns_discovery_type Gateway Option.
If a service contains an instance with a hostname as an address we set the Envoy cluster to use DNS as the discovery type rather than EDS. Since both mesh gateways and terminating gateways route to clusters using SNI, whenever there is a mix of hostnames and IP addresses associated with a service we use the hostname + CDS rather than the IPs + EDS.
Note that we detect hostnames by attempting to parse the service instance's address as an IP. If it is not a valid IP we assume it is a hostname.
* Standardize support for Tagged and BindAddresses in Ingress Gateways
This updates the TaggedAddresses and BindAddresses behavior for Ingress
to match Mesh/Terminating gateways. The `consul connect envoy` command
now also allows passing an address without a port for tagged/bind
addresses.
* Update command/connect/envoy/envoy.go
Co-authored-by: Freddy <freddygv@users.noreply.github.com>
* PR comments
* Check to see if address is an actual IP address
* Update agent/xds/listeners.go
Co-authored-by: Freddy <freddygv@users.noreply.github.com>
* fix whitespace
Co-authored-by: Chris Piraino <cpiraino@hashicorp.com>
Co-authored-by: Freddy <freddygv@users.noreply.github.com>
This commit adds the necessary changes to allow an ingress gateway to
route traffic from a single defined port to multiple different upstream
services in the Consul mesh.
To do this, we now require all HTTP requests coming into the ingress
gateway to specify a Host header that matches "<service-name>.*" in
order to correctly route traffic to the correct service.
- Differentiate multiple listener's route names by port
- Adds a case in xds for allowing default discovery chains to create a
route configuration when on an ingress gateway. This allows default
services to easily use host header routing
- ingress-gateways have a single route config for each listener
that utilizes domain matching to route to different services.