There were several PRs that while all passed CI independently, when they all got merged into the same branch caused compilation errors in test code.
The main changes that caused issues where changing agent/cache.Cache.New to require a concrete options struct instead of a pointer. This broke the cert monitor tests and the catalog_list_services_test.go. Another change was made to unembed the http.Server from the agent.HTTPServer struct. That coupled with another change to add a test to ensure cache rate limiting coming from HTTP requests was working as expected caused compilation failures.
This implements a solution for #7863
It does:
Add a new config cache.entry_fetch_rate to limit the number of calls/s for a given cache entry, default value = rate.Inf
Add cache.entry_fetch_max_burst size of rate limit (default value = 2)
The new configuration now supports the following syntax for instance to allow 1 query every 3s:
command line HCL: -hcl 'cache = { entry_fetch_rate = 0.333}'
in JSON
{
"cache": {
"entry_fetch_rate": 0.333
}
}
Also fix a bug where Consul could segfault if TLS was enabled but no client certificate was provided. How no one has reported this as a problem I am not sure.
The old test case was a very specific regresion test for a case that is no longer possible.
Replaced with a new test that checks the default coordinate is returned.
The envisioned changes would allow extra settings to enable dynamically defined auth methods to be used instead of or in addition to the statically defined one in the configuration.
There are a couple of things in here.
First, just like auto encrypt, any Cluster.AutoConfig RPC will implicitly use the less secure RPC mechanism.
This drastically modifies how the Consul Agent starts up and moves most of the responsibilities (other than signal handling) from the cli command and into the Agent.
In current implementation of Consul, check alias cannot determine
if a service exists or not. Because a service without any check
is semantically considered as passing, so when no healthchecks
are found for an agent, the check was considered as passing.
But this make little sense as the current implementation does not
make any difference between:
* a non-existing service (passing)
* a service without any check (passing as well)
In order to make it work, we have to ensure that when a check did
not find any healthcheck, the service does indeed exists. If it
does not, lets consider the check as failing.
* testing: replace most goe/verify.Values with require.Equal
One difference between these two comparisons is that go/verify considers
nil slices/maps to be equal to empty slices/maps, where as testify/require
does not, and does not appear to provide any way to enable that behaviour.
Because of this difference some expected values were changed from empty
slices to nil slices, and some calls to verify.Values were left.
* Remove github.com/pascaldekloe/goe/verify
Reduce the number of assertion packages we use from 2 to 1
This function now only starts the agent.
Using:
git grep -l 'StartTestAgent(t, true,' | \
xargs sed -i -e 's/StartTestAgent(t, true,/StartTestAgent(t,/g'
Previously the log output included the test name twice and a long date
format. The test output is already grouped by test, so adding the test
name did not add any new information. The date and time are only useful
to understand elapsed time, so using a short format should provide
succident detail.
Also fixed a bug in NewTestAgentWithFields where nil was returned
instead of the test agent.
This test would occasionally fail because we checked for a status of
"critical" initially. This races with the actual healthcheck being run
and declared passing.
We instead use a ttl health check so that we don't rely on timing at all.
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
This fixes issue #7318
Between versions 1.5.2 and 1.5.3, a regression has been introduced regarding health
of services. A patch #6144 had been issued for HealthChecks of nodes, but not for healthchecks
of services.
What happened when a reload was:
1. save all healthcheck statuses
2. cleanup everything
3. add new services with healthchecks
In step 3, the state of healthchecks was taken into account locally,
so at step 3, but since we cleaned up at step 2, state was lost.
This PR introduces the snap parameter, so step 3 can use information from step 1
* Use consts for well known tagged adress keys
* Add ipv4 and ipv6 tagged addresses for node lan and wan
* Add ipv4 and ipv6 tagged addresses for service lan and wan
* Use IPv4 and IPv6 address in DNS
Ensure we close the Sentinel Evaluator so as not to leak go routines
Fix a bunch of test logging so that various warnings when starting a test agent go to the ltest logger and not straight to stdout.
Various canned ent meta types always return a valid pointer (no more nils). This allows us to blindly deref + assign in various places.
Update ACL index tracking to ensure oss -> ent upgrades will work as expected.
Update ent meta parsing to include function to disallow wildcarding.
Fixes#6521
Ensure that initial failures to fetch an agent cache entry using the
notify API where the underlying RPC returns a synthetic index of 1
correctly recovers when those RPCs resume working.
The bug in the Cache.notifyBlockingQuery used to incorrectly "fix" the
index for the next query from 0 to 1 for all queries, when it should
have not done so for queries that errored.
Also fixed some things that made debugging difficult:
- config entry read/list endpoints send back QueryMeta headers
- xds event loops don't swallow the cache notification errors
Fixes: #5396
This PR adds a proxy configuration stanza called expose. These flags register
listeners in Connect sidecar proxies to allow requests to specific HTTP paths from outside of the node. This allows services to protect themselves by only
listening on the loopback interface, while still accepting traffic from non
Connect-enabled services.
Under expose there is a boolean checks flag that would automatically expose all
registered HTTP and gRPC check paths.
This stanza also accepts a paths list to expose individual paths. The primary
use case for this functionality would be to expose paths for third parties like
Prometheus or the kubelet.
Listeners for requests to exposed paths are be configured dynamically at run
time. Any time a proxy, or check can be registered, a listener can also be
created.
In this initial implementation requests to these paths are not
authenticated/encrypted.
Also:
* Finished threading replaceExistingChecks setting (from GH-4905)
through service manager.
* Respected the original configSource value that was used to register a
service or a check when restoring persisted data.
* Run several existing tests with and without central config enabled
(not exhaustive yet).
* Switch to ioutil.ReadFile for all types of agent persistence.
This should cut down on test flakiness.
Problems handled:
- If you had enough parallel test cases running, the former circular
approach to handling the port block could hand out the same port to
multiple cases before they each had a chance to bind them, leading to
one of the two tests to fail.
- The freeport library would allocate out of the ephemeral port range.
This has been corrected for Linux (which should cover CI).
- The library now waits until a formerly-in-use port is verified to be
free before putting it back into circulation.
This fixes pathological cases where the write throughput and snapshot size are both so large that more than 10k log entries are written in the time it takes to restore the snapshot from disk. In this case followers that restart can never catch up with leader replication again and enter a loop of constantly downloading a full snapshot and restoring it only to find that snapshot is already out of date and the leader has truncated its logs so a new snapshot is sent etc.
In general if you need to adjust this, you are probably abusing Consul for purposes outside its design envelope and should reconsider your usage to reduce data size and/or write volume.
* Support for maximum size for Output of checks
This PR allows users to limit the size of output produced by checks at the agent
and check level.
When set at the agent level, it will limit the output for all checks monitored
by the agent.
When set at the check level, it can override the agent max for a specific check but
only if it is lower than the agent max.
Default value is 4k, and input must be at least 1.
The observed bug was that a full restart of a consul datacenter (servers
and clients) in conjunction with a restart of a connect-flavored
application with bring-your-own-service-registration logic would very
frequently cause the envoy sidecar service check to never reflect the
aliased service.
Over the course of investigation several bugs and unfortunate
interactions were corrected:
(1)
local.CheckState objects were only shallow copied, but the key piece of
data that gets read and updated is one of the things not copied (the
underlying Check with a Status field). When the stock code was run with
the race detector enabled this highly-relevant-to-the-test-scenario field
was found to be racy.
Changes:
a) update the existing Clone method to include the Check field
b) copy-on-write when those fields need to change rather than
incrementally updating them in place.
This made the observed behavior occur slightly less often.
(2)
If anything about how the runLocal method for node-local alias check
logic was ever flawed, there was no fallback option. Those checks are
purely edge-triggered and failure to properly notice a single edge
transition would leave the alias check incorrect until the next flap of
the aliased check.
The change was to introduce a fallback timer to act as a control loop to
double check the alias check matches the aliased check every minute
(borrowing the duration from the non-local alias check logic body).
This made the observed behavior eventually go away when it did occur.
(3)
Originally I thought there were two main actions involved in the data race:
A. The act of adding the original check (from disk recovery) and its
first health evaluation.
B. The act of the HTTP API requests coming in and resetting the local
state when re-registering the same services and checks.
It took awhile for me to realize that there's a third action at work:
C. The goroutines associated with the original check and the later
checks.
The actual sequence of actions that was causing the bad behavior was
that the API actions result in the original check to be removed and
re-added _without waiting for the original goroutine to terminate_. This
means for brief windows of time during check definition edits there are
two goroutines that can be sending updates for the alias check status.
In extremely unlikely scenarios the original goroutine sees the aliased
check start up in `critical` before being removed but does not get the
notification about the nearly immediate update of that check to
`passing`.
This is interlaced wit the new goroutine coming up, initializing its
base case to `passing` from the current state and then listening for new
notifications of edge triggers.
If the original goroutine "finishes" its update, it then commits one
more write into the local state of `critical` and exits leaving the
alias check no longer reflecting the underlying check.
The correction here is to enforce that the old goroutines must terminate
before spawning the new one for alias checks.
* First conversion
* Use serf 0.8.2 tag and associated updated deps
* * Move freeport and testutil into internal/
* Make internal/ its own module
* Update imports
* Add replace statements so API and normal Consul code are
self-referencing for ease of development
* Adapt to newer goe/values
* Bump to new cleanhttp
* Fix ban nonprintable chars test
* Update lock bad args test
The error message when the duration cannot be parsed changed in Go 1.12
(ae0c435877d3aacb9af5e706c40f9dddde5d3e67). This updates that test.
* Update another test as well
* Bump travis
* Bump circleci
* Bump go-discover and godo to get rid of launchpad dep
* Bump dockerfile go version
* fix tar command
* Bump go-cleanhttp
This PR introduces reloading tls configuration. Consul will now be able to reload the TLS configuration which previously required a restart. It is not yet possible to turn TLS ON or OFF with these changes. Only when TLS is already turned on, the configuration can be reloaded. Most importantly the certificates and CAs.
Prevent race between register and deregister requests by saving them
together in the local state on registration.
Also adds more cleaning in case of failure when registering services
/ checks.
This PR adds two features which will be useful for operators when ACLs are in use.
1. Tokens set in configuration files are now reloadable.
2. If `acl.enable_token_persistence` is set to `true` in the configuration, tokens set via the `v1/agent/token` endpoint are now persisted to disk and loaded when the agent starts (or during configuration reload)
Note that token persistence is opt-in so our users who do not want tokens on the local disk will see no change.
Some other secondary changes:
* Refactored a bunch of places where the replication token is retrieved from the token store. This token isn't just for replicating ACLs and now it is named accordingly.
* Allowed better paths in the `v1/agent/token/` API. Instead of paths like: `v1/agent/token/acl_replication_token` the path can now be just `v1/agent/token/replication`. The old paths remain to be valid.
* Added a couple new API functions to set tokens via the new paths. Deprecated the old ones and pointed to the new names. The names are also generally better and don't imply that what you are setting is for ACLs but rather are setting ACL tokens. There is a minor semantic difference there especially for the replication token as again, its no longer used only for ACL token/policy replication. The new functions will detect 404s and fallback to using the older token paths when talking to pre-1.4.3 agents.
* Docs updated to reflect the API additions and to show using the new endpoints.
* Updated the ACL CLI set-agent-tokens command to use the non-deprecated APIs.
This way we can avoid unnecessary panics which cause other tests not to run.
This doesn't remove all the possibilities for panics causing other tests not to run, it just fixes the TestAgent
Given a query like:
```
{
"Name": "tagged-connect-query",
"Service": {
"Service": "foo",
"Tags": ["tag"],
"Connect": true
}
}
```
And a Consul configuration like:
```
{
"services": [
"name": "foo",
"port": 8080,
"connect": { "sidecar_service": {} },
"tags": ["tag"]
]
}
```
If you executed the query it would always turn up with 0 results. This was because the sidecar service was being created without any tags. You could instead make your config look like:
```
{
"services": [
"name": "foo",
"port": 8080,
"connect": { "sidecar_service": {
"tags": ["tag"]
} },
"tags": ["tag"]
]
}
```
However that is a bit redundant for most cases. This PR ensures that the tags and service meta of the parent service get copied to the sidecar service. If there are any tags or service meta set in the sidecar service definition then this copying does not take place. After the changes, the query will now return the expected results.
A second change was made to prepared queries in this PR which is to allow filtering on ServiceMeta just like we allow for filtering on NodeMeta.