* Adding explicit MPL license for sub-package
This directory and its subdirectories (packages) contain files licensed with the MPLv2 `LICENSE` file in this directory and are intentionally licensed separately from the BSL `LICENSE` file at the root of this repository.
* Adding explicit MPL license for sub-package
This directory and its subdirectories (packages) contain files licensed with the MPLv2 `LICENSE` file in this directory and are intentionally licensed separately from the BSL `LICENSE` file at the root of this repository.
* Updating the license from MPL to Business Source License
Going forward, this project will be licensed under the Business Source License v1.1. Please see our blog post for more details at <Blog URL>, FAQ at www.hashicorp.com/licensing-faq, and details of the license at www.hashicorp.com/bsl.
* add missing license headers
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
---------
Co-authored-by: hashicorp-copywrite[bot] <110428419+hashicorp-copywrite[bot]@users.noreply.github.com>
Protobuf Refactoring for Multi-Module Cleanliness
This commit includes the following:
Moves all packages that were within proto/ to proto/private
Rewrites imports to account for the packages being moved
Adds in buf.work.yaml to enable buf workspaces
Names the proto-public buf module so that we can override the Go package imports within proto/buf.yaml
Bumps the buf version dependency to 1.14.0 (I was trying out the version to see if it would get around an issue - it didn't but it also doesn't break things and it seemed best to keep up with the toolchain changes)
Why:
In the future we will need to consume other protobuf dependencies such as the Google HTTP annotations for openapi generation or grpc-gateway usage.
There were some recent changes to have our own ratelimiting annotations.
The two combined were not working when I was trying to use them together (attempting to rebase another branch)
Buf workspaces should be the solution to the problem
Buf workspaces means that each module will have generated Go code that embeds proto file names relative to the proto dir and not the top level repo root.
This resulted in proto file name conflicts in the Go global protobuf type registry.
The solution to that was to add in a private/ directory into the path within the proto/ directory.
That then required rewriting all the imports.
Is this safe?
AFAICT yes
The gRPC wire protocol doesn't seem to care about the proto file names (although the Go grpc code does tack on the proto file name as Metadata in the ServiceDesc)
Other than imports, there were no changes to any generated code as a result of this.
* autoencrypt: helpful error for clients with wrong dc
If clients have set a different datacenter than the servers they're
connecting with for autoencrypt, give a helpful error message.
Fix an issue where rpc_hold_timeout was being used as the timeout for non-blocking queries. Users should be able to tune read timeouts without fiddling with rpc_hold_timeout. A new configuration `rpc_read_timeout` is created.
Refactor some implementation from the original PR 11500 to remove the misleading linkage between RPCInfo's timeout (used to retry in case of certain modes of failures) and the client RPC timeouts.
Previously, public referred to gRPC services that are both exposed on
the dedicated gRPC port and have their definitions in the proto-public
directory (so were considered usable by 3rd parties). Whereas private
referred to services on the multiplexed server port that are only usable
by agents and other servers.
Now, we're splitting these definitions, such that external/internal
refers to the port and public/private refers to whether they can be used
by 3rd parties.
This is necessary because the peering replication API needs to be
exposed on the dedicated port, but is not (yet) suitable for use by 3rd
parties.
Adds a timeout (deadline) to client RPC calls, so that streams will no longer hang indefinitely in unstable network conditions.
Co-authored-by: kisunji <ckim@hashicorp.com>
Introduces the capability to configure TLS differently for Consul's
listeners/ports (i.e. HTTPS, gRPC, and the internal multiplexed RPC
port) which is useful in scenarios where you may want the HTTPS or
gRPC interfaces to present a certificate signed by a well-known/public
CA, rather than the certificate used for internal communication which
must have a SAN in the form `server.<dc>.consul`.
This commit syncs ENT changes to the OSS repo.
Original commit details in ENT:
```
commit 569d25f7f4578981c3801e6e067295668210f748
Author: FFMMM <FFMMM@users.noreply.github.com>
Date: Thu Feb 10 10:23:33 2022 -0800
Vendor fork net rpc (#1538)
* replace net/rpc w consul-net-rpc/net/rpc
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
* replace msgpackrpc and go-msgpack with fork from mono repo
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
* gofmt all files touched
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
```
Signed-off-by: FFMMM <FFMMM@users.noreply.github.com>
There are a couple of things in here.
First, just like auto encrypt, any Cluster.AutoConfig RPC will implicitly use the less secure RPC mechanism.
This drastically modifies how the Consul Agent starts up and moves most of the responsibilities (other than signal handling) from the cli command and into the Agent.
In the past TLS usage was enforced with these variables, but these days
this decision is made by TLSConfigurator and there is no reason to keep
using the variables.
The version field has been used to decide which multiplexing to use. It
was introduced in 2457293dce. But this is
6y ago and there is no need for this differentiation anymore.
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
We set RawToString=true so that []uint8 => string when decoding an interface{}.
We set the MapType so that map[interface{}]interface{} decodes to map[string]interface{}.
Add tests to ensure that this doesn't break existing usages.
Fixes#7223
* Adds client-side retry for no leader errors.
This paves over the case where the client was connected to the leader
when it loses leadership.
* Adds a configurable server RPC drain time and a fail-fast path for RPCs.
When a server leaves it gets removed from the Raft configuration, so it will
never know who the new leader server ends up being. Without this we'd be
doomed to wait out the RPC hold timeout and then fail. This makes things fail
a little quicker while a sever is draining, and since we added a client retry
AND since the server doing this has already shut down and left the Serf LAN,
clients should retry against some other server.
* Makes the RPC hold timeout configurable.
* Reorders struct members.
* Sets the RPC hold timeout default for test servers.
* Bumps the leave drain time up to 5 seconds.
* Robustifies retries with a simpler client-side RPC hold.
* Reverts untended delete.
* Changes default Raft protocol to 3.
* Changes numPeers() to report only voters.
This should have been there before, but it's more obvious that this
is incorrect now that we default the Raft protocol to 3, which puts
new servers in a read-only state while Autopilot waits for them to
become healthy.
* Fixes TestLeader_RollRaftServer.
* Fixes TestOperator_RaftRemovePeerByAddress.
* Fixes TestServer_*.
Relaxed the check for a given number of voter peers and instead do
a thorough check that all servers see each other in their Raft
configurations.
* Fixes TestACL_*.
These now just check for Raft replication to be set up, and don't
care about the number of voter peers.
* Fixes TestOperator_Raft_ListPeers.
* Fixes TestAutopilot_CleanupDeadServerPeriodic.
* Fixes TestCatalog_ListNodes_ConsistentRead_Fail.
* Fixes TestLeader_ChangeServerID and adjusts the conn pool to throw away
sockets when it sees io.EOF.
* Changes version to 1.0.0 in the options doc.
* Makes metrics test more deterministic with autopilot metrics possible.