* Adding explicit MPL license for sub-package
This directory and its subdirectories (packages) contain files licensed with the MPLv2 `LICENSE` file in this directory and are intentionally licensed separately from the BSL `LICENSE` file at the root of this repository.
* Adding explicit MPL license for sub-package
This directory and its subdirectories (packages) contain files licensed with the MPLv2 `LICENSE` file in this directory and are intentionally licensed separately from the BSL `LICENSE` file at the root of this repository.
* Updating the license from MPL to Business Source License
Going forward, this project will be licensed under the Business Source License v1.1. Please see our blog post for more details at <Blog URL>, FAQ at www.hashicorp.com/licensing-faq, and details of the license at www.hashicorp.com/bsl.
* add missing license headers
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
* Update copyright file headers to BUSL-1.1
---------
Co-authored-by: hashicorp-copywrite[bot] <110428419+hashicorp-copywrite[bot]@users.noreply.github.com>
* Add logging to locality policy application
In OSS, this is currently a no-op.
* Inherit locality when registering sidecars
When sidecar locality is not explicitly configured, inherit locality
from the proxied service.
Ensure nothing in the troubleshoot go module depends on consul's top level module. This is so we can import troubleshoot into consul-k8s and not import all of consul.
* turns troubleshoot into a go module [authored by @curtbushko]
* gets the envoy protos into the troubleshoot module [authored by @curtbushko]
* adds a new go module `envoyextensions` which has xdscommon and extensioncommon folders that both the xds package and the troubleshoot package can import
* adds testing and linting for the new go modules
* moves the unit tests in `troubleshoot/validateupstream` that depend on proxycfg/xds into the xds package, with a comment describing why those tests cannot be in the troubleshoot package
* fixes all the imports everywhere as a result of these changes
Co-authored-by: Curt Bushko <cbushko@gmail.com>
* ingress-gateways: don't log error when registering gateway
Previously, when an ingress gateway was registered without a
corresponding ingress gateway config entry, an error was logged
because the watch on the config entry returned a nil result.
This is expected so don't log an error.
This is the OSS portion of enterprise PR 1994
Rather than directly interrogating the agent-local state for HTTP
checks using the `HTTPCheckFetcher` interface, we now rely on the
config snapshot containing the checks.
This reduces the number of changes required to support server xDS
sessions.
It's not clear why the fetching approach was introduced in
931d167ebb.
Prior to this PR for the envoy xDS golden tests in the agent/xds package we
were hand-creating a proxycfg.ConfigSnapshot structure in the proper format for
input to the xDS generator. Over time this intermediate structure has gotten
trickier to build correctly for the various tests.
This PR proposes to switch to using the existing mechanism for turning a
structs.NodeService and a sequence of cache.UpdateEvent copies into a
proxycfg.ConfigSnapshot, as that is less error prone to construct and aligns
more with how the data arrives.
NOTE: almost all of this is in test-related code. I tried super hard to craft
correct event inputs to get the golden files to be the same, or similar enough
after construction to feel ok that i recreated the spirit of the original test
cases.
The gist here is that now we use a value-type struct proxycfg.UpstreamID
as the map key in ConfigSnapshot maps where we used to use "upstream
id-ish" strings. These are internal only and used just for bidirectional
trips through the agent cache keyspace (like the discovery chain target
struct).
For the few places where the upstream id needs to be projected into xDS,
that's what (proxycfg.UpstreamID).EnvoyID() is for. This lets us ALWAYS
inject the partition and namespace into these things without making
stuff like the golden testdata diverge.
Fixes an issue described in #10132, where if two DCs are WAN federated
over mesh gateways, and the gateway in the non-primary DC is terminated
and receives a new IP address (as is commonly the case when running them
on ephemeral compute instances) the primary DC is unable to re-establish
its connection until the agent running on its own gateway is restarted.
This was happening because we always preferred gateways discovered by
the `Internal.ServiceDump` RPC (which would fail because there's no way
to dial the remote DC) over those discovered in the federation state,
which is replicated as long as the primary DC's gateway is reachable.
The only thing that needed fixing up pertained to this section of the 1.18.x release notes:
> grpc_stats: the default value for stats_for_all_methods is switched from true to false, in order to avoid possible memory exhaustion due to an untrusted downstream sending a large number of unique method names. The previous default value was deprecated in version 1.14.0. This only changes the behavior when the value is not set. The previous behavior can be used by setting the value to true. This behavior change by be overridden by setting runtime feature envoy.deprecated_features.grpc_stats_filter_enable_stats_for_all_methods_by_default.
For now to maintain status-quo I'm explicitly setting `stats_for_all_methods=true` in all versions to avoid relying upon the default.
Additionally the naming of the emitted metrics for these gRPC requests changed slightly so the integration test assertions for `case-grpc` needed adjusting.
This adds support for the Incremental xDS protocol when using xDS v3. This is best reviewed commit-by-commit and will not be squashed when merged.
Union of all commit messages follows to give an overarching summary:
xds: exclusively support incremental xDS when using xDS v3
Attempts to use SoTW via v3 will fail, much like attempts to use incremental via v2 will fail.
Work around a strange older envoy behavior involving empty CDS responses over incremental xDS.
xds: various cleanups and refactors that don't strictly concern the addition of incremental xDS support
Dissolve the connectionInfo struct in favor of per-connection ResourceGenerators instead.
Do a better job of ensuring the xds code uses a well configured logger that accurately describes the connected client.
xds: pull out checkStreamACLs method in advance of a later commit
xds: rewrite SoTW xDS protocol tests to use protobufs rather than hand-rolled json strings
In the test we very lightly reuse some of the more boring protobuf construction helper code that is also technically under test. The important thing of the protocol tests is testing the protocol. The actual inputs and outputs are largely already handled by the xds golden output tests now so these protocol tests don't have to do double-duty.
This also updates the SoTW protocol test to exclusively use xDS v2 which is the only variant of SoTW that will be supported in Consul 1.10.
xds: default xds.Server.AuthCheckFrequency at use-time instead of construction-time
Since we currently do no version switching this removes 75% of the PR
noise.
To generate all *.golden files were removed and then I ran:
go test ./agent/xds -update
Note that this does NOT upgrade to xDS v3. That will come in a future PR.
Additionally:
- Ignored staticcheck warnings about how github.com/golang/protobuf is deprecated.
- Shuffled some agent/xds imports in advance of a later xDS v3 upgrade.
- Remove support for envoy 1.13.x but don't add in 1.17.x yet. We have to wait until the xDS v3 support is added in a follow-up PR.
Fixes#8425
Add a skip condition to all tests slower than 100ms.
This change was made using `gotestsum tool slowest` with data from the
last 3 CI runs of master.
See https://github.com/gotestyourself/gotestsum#finding-and-skipping-slow-tests
With this change:
```
$ time go test -count=1 -short ./agent
ok github.com/hashicorp/consul/agent 0.743s
real 0m4.791s
$ time go test -count=1 -short ./agent/consul
ok github.com/hashicorp/consul/agent/consul 4.229s
real 0m8.769s
```
Related changes:
- hard-fail the xDS connection attempt if the envoy version is known to be too old to be supported
- remove the RouterMatchSafeRegex proxy feature since all supported envoy versions have it
- stop using --max-obj-name-len (due to: envoyproxy/envoy#11740)
This commit copies many of the connect-proxy xds testcases and reuses
for ingress gateways. This allows us to more easily see changes to the
envoy configuration when make updates to ingress gateways.
* Implements a simple, tcp ingress gateway workflow
This adds a new type of gateway for allowing Ingress traffic into Connect from external services.
Co-authored-by: Chris Piraino <cpiraino@hashicorp.com>
This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch:
There are several distinct chunks of code that are affected:
* new flags and config options for the server
* retry join WAN is slightly different
* retry join code is shared to discover primary mesh gateways from secondary datacenters
* because retry join logic runs in the *agent* and the results of that
operation for primary mesh gateways are needed in the *server* there are
some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur
at multiple layers of abstraction just to pass the data down to the right
layer.
* new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers
* the function signature for RPC dialing picked up a new required field (the
node name of the destination)
* several new RPCs for manipulating a FederationState object:
`FederationState:{Apply,Get,List,ListMeshGateways}`
* 3 read-only internal APIs for debugging use to invoke those RPCs from curl
* raft and fsm changes to persist these FederationStates
* replication for FederationStates as they are canonically stored in the
Primary and replicated to the Secondaries.
* a special derivative of anti-entropy that runs in secondaries to snapshot
their local mesh gateway `CheckServiceNodes` and sync them into their upstream
FederationState in the primary (this works in conjunction with the
replication to distribute addresses for all mesh gateways in all DCs to all
other DCs)
* a "gateway locator" convenience object to make use of this data to choose
the addresses of gateways to use for any given RPC or gossip operation to a
remote DC. This gets data from the "retry join" logic in the agent and also
directly calls into the FSM.
* RPC (`:8300`) on the server sniffs the first byte of a new connection to
determine if it's actually doing native TLS. If so it checks the ALPN header
for protocol determination (just like how the existing system uses the
type-byte marker).
* 2 new kinds of protocols are exclusively decoded via this native TLS
mechanism: one for ferrying "packet" operations (udp-like) from the gossip
layer and one for "stream" operations (tcp-like). The packet operations
re-use sockets (using length-prefixing) to cut down on TLS re-negotiation
overhead.
* the server instances specially wrap the `memberlist.NetTransport` when running
with gateway federation enabled (in a `wanfed.Transport`). The general gist is
that if it tries to dial a node in the SAME datacenter (deduced by looking
at the suffix of the node name) there is no change. If dialing a DIFFERENT
datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh
gateways to eventually end up in a server's :8300 port.
* a new flag when launching a mesh gateway via `consul connect envoy` to
indicate that the servers are to be exposed. This sets a special service
meta when registering the gateway into the catalog.
* `proxycfg/xds` notice this metadata blob to activate additional watches for
the FederationState objects as well as the location of all of the consul
servers in that datacenter.
* `xds:` if the extra metadata is in place additional clusters are defined in a
DC to bulk sink all traffic to another DC's gateways. For the current
datacenter we listen on a wildcard name (`server.<dc>.consul`) that load
balances all servers as well as one mini-cluster per node
(`<node>.server.<dc>.consul`)
* the `consul tls cert create` command got a new flag (`-node`) to help create
an additional SAN in certs that can be used with this flavor of federation.
* xDS Mesh Gateway Resolver Subset Fixes
The first fix was that clusters were being generated for every service resolver subset regardless of there being any service instances of the associated service in that dc. The previous logic didn’t care at all but now it will omit generating those clusters unless we also have service instances that should be proxied.
The second fix was to respect the DefaultSubset of a service resolver so that mesh-gateways would configure the endpoints of the unnamed subset cluster to only those endpoints matched by the default subsets filters.
* Refactor the gateway endpoint generation to be a little easier to read
Compiling this will set an optional SNI field on each DiscoveryTarget.
When set this value should be used for TLS connections to the instances
of the target. If not set the default should be used.
Setting ExternalSNI will disable mesh gateway use for that target. It also
disables several service-resolver features that do not make sense for an
external service.
Failover is pushed entirely down to the data plane by creating envoy
clusters and putting each successive destination in a different load
assignment priority band. For example this shows that normally requests
go to 1.2.3.4:8080 but when that fails they go to 6.7.8.9:8080:
- name: foo
load_assignment:
cluster_name: foo
policy:
overprovisioning_factor: 100000
endpoints:
- priority: 0
lb_endpoints:
- endpoint:
address:
socket_address:
address: 1.2.3.4
port_value: 8080
- priority: 1
lb_endpoints:
- endpoint:
address:
socket_address:
address: 6.7.8.9
port_value: 8080
Mesh gateways route requests based solely on the SNI header tacked onto
the TLS layer. Envoy currently only lets you configure the outbound SNI
header at the cluster layer.
If you try to failover through a mesh gateway you ideally would
configure the SNI value per endpoint, but that's not possible in envoy
today.
This PR introduces a simpler way around the problem for now:
1. We identify any target of failover that will use mesh gateway mode local or
remote and then further isolate any resolver node in the compiled discovery
chain that has a failover destination set to one of those targets.
2. For each of these resolvers we will perform a small measurement of
comparative healths of the endpoints that come back from the health API for the
set of primary target and serial failover targets. We walk the list of targets
in order and if any endpoint is healthy we return that target, otherwise we
move on to the next target.
3. The CDS and EDS endpoints both perform the measurements in (2) for the
affected resolver nodes.
4. For CDS this measurement selects which TLS SNI field to use for the cluster
(note the cluster is always going to be named for the primary target)
5. For EDS this measurement selects which set of endpoints will populate the
cluster. Priority tiered failover is ignored.
One of the big downsides to this approach to failover is that the failover
detection and correction is going to be controlled by consul rather than
deferring that entirely to the data plane as with the prior version. This also
means that we are bound to only failover using official health signals and
cannot make use of data plane signals like outlier detection to affect
failover.
In this specific scenario the lack of data plane signals is ok because the
effectiveness is already muted by the fact that the ultimate destination
endpoints will have their data plane signals scrambled when they pass through
the mesh gateway wrapper anyway so we're not losing much.
Another related fix is that we now use the endpoint health from the
underlying service, not the health of the gateway (regardless of
failover mode).
In addition to exposing compilation over the API cleaned up the structures that would be exchanged to be cleaner and easier to support and understand.
Also removed ability to configure the envoy OverprovisioningFactor.