Peered upstreams has a separate loop in xds from discovery chain upstreams. This PR adds similar but slightly modified code to add filters for peered upstream listeners, clusters, and endpoints in the case of transparent proxy.
Because peerings are pairwise, between two tuples of (datacenter,
partition) having any exported reference via a discovery chain that
crosses out of the peered datacenter or partition will ultimately not be
able to work for various reasons. The biggest one is that there is no
way in the ultimate destination to configure an intention that can allow
an external SpiffeID to access a service.
This PR ensures that a user simply cannot do this, so they won't run
into weird situations like this.
This is the OSS portion of enterprise PR 2141.
This commit provides a server-local implementation of the `proxycfg.Intentions`
interface that sources data from streaming events.
It adds events for the `service-intentions` config entry type, and then consumes
event streams (via materialized views) for the service's explicit intentions and
any applicable wildcard intentions, merging them into a single list of intentions.
An alternative approach I considered was to consume _all_ intention events (via
`SubjectWildcard`) and filter out the irrelevant ones. This would admittedly
remove some complexity in the `agent/proxycfg-glue` package but at the expense
of considerable overhead from waking potentially many thousands of connect
proxies every time any intention is updated.
For initial cluster peering TProxy support we consider all imported services of a partition to be potential upstreams.
We leverage the VirtualIP table because it stores plain service names (e.g. "api", not "api-sidecar-proxy").
When the protocol is http-like, and an intention has a peered source
then the normal RBAC mTLS SAN field check is replaces with a joint combo
of:
mTLS SAN field must be the service's local mesh gateway leaf cert
AND
the first XFCC header (from the MGW) must have a URI field that matches the original intention source
Also:
- Update the regex program limit to be much higher than the teeny
defaults, since the RBAC regex constructions are more complicated now.
- Fix a few stray panics in xds generation.
This is only configured in xDS when a service with an L7 protocol is
exported.
They also load any relevant trust bundles for the peered services to
eventually use for L7 SPIFFE validation during mTLS termination.
Mesh gateways can use hostnames in their tagged addresses (#7999). This is useful
if you were to expose a mesh gateway using a cloud networking load balancer appliance
that gives you a DNS name but no reliable static IPs.
Envoy cannot accept hostnames via EDS and those must be configured using CDS.
There was already logic when configuring gateways in other locations in the code, but
given the illusions in play for peering the downstream of a peered service wasn't aware
that it should be doing that.
Also:
- ensuring that we always try to use wan-like addresses to cross peer boundaries.
Mesh gateways will now enable tcp connections with SNI names including peering information so that those connections may be proxied.
Note: this does not change the callers to use these mesh gateways.
This is the OSS portion of enterprise PR 1994
Rather than directly interrogating the agent-local state for HTTP
checks using the `HTTPCheckFetcher` interface, we now rely on the
config snapshot containing the checks.
This reduces the number of changes required to support server xDS
sessions.
It's not clear why the fetching approach was introduced in
931d167ebb2300839b218d08871f22323c60175d.
Envoy's SPIFFE certificate validation extension allows for us to
validate against different root certificates depending on the trust
domain of the dialing proxy.
If there are any trust bundles from peers in the config snapshot then we
use the SPIFFE validator as the validation context, rather than the
usual TrustedCA.
The injected validation config includes the local root certificates as
well.
For mTLS to work between two proxies in peered clusters with different root CAs,
proxies need to configure their outbound listener to use different root certificates
for validation.
Up until peering was introduced proxies would only ever use one set of root certificates
to validate all mesh traffic, both inbound and outbound. Now an upstream proxy
may have a leaf certificate signed by a CA that's different from the dialing proxy's.
This PR makes changes to proxycfg and xds so that the upstream TLS validation
uses different root certificates depending on which cluster is being dialed.
This is the OSS portion of enterprise PRs 1904, 1905, 1906, 1907, 1949,
and 1971.
It replaces the proxycfg manager's direct dependency on the agent cache
with interfaces that will be implemented differently when serving xDS
sessions from a Consul server.
OSS port of enterprise PR 1822
Includes the necessary changes to the `proxycfg` and `xds` packages to enable
Consul servers to configure arbitrary proxies using catalog data.
Broadly, `proxycfg.Manager` now has public methods for registering,
deregistering, and listing registered proxies — the existing local agent
state-sync behavior has been moved into a separate component that makes use of
these methods.
When an xDS session is started for a proxy service in the catalog, a goroutine
will be spawned to watch the service in the server's state store and
re-register it with the `proxycfg.Manager` whenever it is updated (and clean
it up when the client goes away).
OSS portion of enterprise PR 1857.
This removes (most) references to the `cache.UpdateEvent` type in the
`proxycfg` package.
As we're going to be direct usage of the agent cache with interfaces that
can be satisfied by alternative server-local datasources, it doesn't make
sense to depend on this type everywhere anymore (particularly on the
`state.ch` channel).
We also plan to extract `proxycfg` out of Consul into a shared library in
the future, which would require removing this dependency.
Aside from a fairly rote find-and-replace, the main change is that the
`cache.Cache` and `health.Client` types now accept a callback function
parameter, rather than a `chan<- cache.UpdateEvents`. This allows us to
do the type conversion without running another goroutine.
Just like standard upstreams the order of applicability in descending precedence:
1. caller's `service-defaults` upstream override for destination
2. caller's `service-defaults` upstream defaults
3. destination's `service-resolver` ConnectTimeout
4. system default of 5s
Co-authored-by: mrspanishviking <kcardenas@hashicorp.com>
- `tls.incoming`: applies to the inbound mTLS targeting the public
listener on `connect-proxy` and `terminating-gateway` envoy instances
- `tls.outgoing`: applies to the outbound mTLS dialing upstreams from
`connect-proxy` and `ingress-gateway` envoy instances
Fixes#11966
Prior to this PR for the envoy xDS golden tests in the agent/xds package we
were hand-creating a proxycfg.ConfigSnapshot structure in the proper format for
input to the xDS generator. Over time this intermediate structure has gotten
trickier to build correctly for the various tests.
This PR proposes to switch to using the existing mechanism for turning a
structs.NodeService and a sequence of cache.UpdateEvent copies into a
proxycfg.ConfigSnapshot, as that is less error prone to construct and aligns
more with how the data arrives.
NOTE: almost all of this is in test-related code. I tried super hard to craft
correct event inputs to get the golden files to be the same, or similar enough
after construction to feel ok that i recreated the spirit of the original test
cases.
Transparent proxies typically cannot dial upstreams in remote
datacenters. However, if their upstream configures a redirect to a
remote DC then the upstream targets will be in another datacenter.
In that sort of case we should use the WAN address for the passthrough.
Due to timing, a transparent proxy could have two upstreams to dial
directly with the same address.
For example:
- The orders service can dial upstreams shipping and payment directly.
- An instance of shipping at address 10.0.0.1 is deregistered.
- Payments is scaled up and scheduled to have address 10.0.0.1.
- The orders service receives the event for the new payments instance
before seeing the deregistration for the shipping instance. At this
point two upstreams have the same passthrough address and Envoy will
reject the listener configuration.
To disambiguate this commit considers the Raft index when storing
passthrough addresses. In the example above, 10.0.0.1 would only be
associated with the newer payments service instance.
Transparent proxies can set up filter chains that allow direct
connections to upstream service instances. Services that can be dialed
directly are stored in the PassthroughUpstreams map of the proxycfg
snapshot.
Previously these addresses were not being cleaned up based on new
service health data. The list of addresses associated with an upstream
service would only ever grow.
As services scale up and down, eventually they will have instances
assigned to an IP that was previously assigned to a different service.
When IP addresses are duplicated across filter chain match rules the
listener config will be rejected by Envoy.
This commit updates the proxycfg snapshot management so that passthrough
addresses can get cleaned up when no longer associated with a given
upstream.
There is still the possibility of a race condition here where due to
timing an address is shared between multiple passthrough upstreams.
That concern is mitigated by #12195, but will be further addressed
in a follow-up.
set -euo pipefail
unset CDPATH
cd "$(dirname "$0")"
for f in $(git grep '\brequire := require\.New(' | cut -d':' -f1 | sort -u); do
echo "=== require: $f ==="
sed -i '/require := require.New(t)/d' $f
# require.XXX(blah) but not require.XXX(tblah) or require.XXX(rblah)
sed -i 's/\brequire\.\([a-zA-Z0-9_]*\)(\([^tr]\)/require.\1(t,\2/g' $f
# require.XXX(tblah) but not require.XXX(t, blah)
sed -i 's/\brequire\.\([a-zA-Z0-9_]*\)(\(t[^,]\)/require.\1(t,\2/g' $f
# require.XXX(rblah) but not require.XXX(r, blah)
sed -i 's/\brequire\.\([a-zA-Z0-9_]*\)(\(r[^,]\)/require.\1(t,\2/g' $f
gofmt -s -w $f
done
for f in $(git grep '\bassert := assert\.New(' | cut -d':' -f1 | sort -u); do
echo "=== assert: $f ==="
sed -i '/assert := assert.New(t)/d' $f
# assert.XXX(blah) but not assert.XXX(tblah) or assert.XXX(rblah)
sed -i 's/\bassert\.\([a-zA-Z0-9_]*\)(\([^tr]\)/assert.\1(t,\2/g' $f
# assert.XXX(tblah) but not assert.XXX(t, blah)
sed -i 's/\bassert\.\([a-zA-Z0-9_]*\)(\(t[^,]\)/assert.\1(t,\2/g' $f
# assert.XXX(rblah) but not assert.XXX(r, blah)
sed -i 's/\bassert\.\([a-zA-Z0-9_]*\)(\(r[^,]\)/assert.\1(t,\2/g' $f
gofmt -s -w $f
done