Previously the tokens would fail to insert into the secondary's state
store because the AuthMethod field of the ACLToken did not point to a
known auth method from the primary.
* server: fix panic when deleting a non existent intention
* add changelog
* Always return an error when deleting non-existent ixn
Co-authored-by: freddygv <gh@freddygv.xyz>
* server: fix panic when deleting a non existent intention
* add changelog
* Always return an error when deleting non-existent ixn
Co-authored-by: freddygv <gh@freddygv.xyz>
* changelog: add post-rc1 entries
* changelog: regenerate entries from LAST_RELEASE_GIT_TAG=v1.8.4, remove beta releases
* changelog: tweak categories for a few entries and add Go 1.15 note
* changelog: apply category changes to CHANGELOG.md
manually remove Go 1.14 upgrade note and two intermediate UI bug fix
entries for the new topology feature
A vulnerability was identified in Consul and Consul Enterprise (“Consul”) such that operators with `operator:read` ACL permissions are able to read the Consul Connect CA configuration when explicitly configured with the `/v1/connect/ca/configuration` endpoint, including the private key. This allows the user to effectively privilege escalate by enabling the ability to mint certificates for any Consul Connect services. This would potentially allow them to masquerade (receive/send traffic) as any service in the mesh.
--
This PR increases the permissions required to read the Connect CA's private key when it was configured via the `/connect/ca/configuration` endpoint. They are now `operator:write`.
A vulnerability was identified in Consul and Consul Enterprise (“Consul”) such that operators with `operator:read` ACL permissions are able to read the Consul Connect CA configuration when explicitly configured with the `/v1/connect/ca/configuration` endpoint, including the private key. This allows the user to effectively privilege escalate by enabling the ability to mint certificates for any Consul Connect services. This would potentially allow them to masquerade (receive/send traffic) as any service in the mesh.
--
This PR increases the permissions required to read the Connect CA's private key when it was configured via the `/connect/ca/configuration` endpoint. They are now `operator:write`.
This PR updates the tags that we generate for Envoy stats.
Several of these come with breaking changes, since we can't keep two stats prefixes for a filter.
This PR updates the tags that we generate for Envoy stats.
Several of these come with breaking changes, since we can't keep two stats prefixes for a filter.
The Intention.Apply RPC is quite large, so this PR attempts to break it down into smaller functions and dissolves the pre-config-entry approach to the breakdown as it only confused things.
Header is: X-Consul-Default-ACL-Policy=<allow|deny>
This is of particular utility when fetching matching intentions, as the
fallthrough for a request that doesn't match any intentions is to
enforce using the default acl policy.
The Catalog, Config Entry, KV and Session resources potentially re-validate the input as its coming in. We need to prevent snapshot restoration failures due to missing namespaces or namespaces that are being deleted in enterprise.
Previously config entries sharing a kind & name but in different
namespaces could occasionally cause "stuck states" in replication
because the namespace fields were ignored during the differential
comparison phase.
Example:
Two config entries written to the primary:
kind=A,name=web,namespace=bar
kind=A,name=web,namespace=foo
Under the covers these both get saved to memdb, so they are sorted by
all 3 components (kind,name,namespace) during natural iteration. This
means that before the replication code does it's own incomplete sort,
the underlying data IS sorted by namespace ascending (bar comes before
foo).
After one pass of replication the primary and secondary datacenters have
the same set of config entries present. If
"kind=A,name=web,namespace=bar" were to be deleted, then things get
weird. Before replication the two sides look like:
primary: [
kind=A,name=web,namespace=foo
]
secondary: [
kind=A,name=web,namespace=bar
kind=A,name=web,namespace=foo
]
The differential comparison phase walks these two lists in sorted order
and first compares "kind=A,name=web,namespace=foo" vs
"kind=A,name=web,namespace=bar" and falsely determines they are the SAME
and are thus cause an update of "kind=A,name=web,namespace=foo". Then it
compares "<nothing>" with "kind=A,name=web,namespace=foo" and falsely
determines that the latter should be DELETED.
During reconciliation the deletes are processed before updates, and so
for a brief moment in the secondary "kind=A,name=web,namespace=foo" is
erroneously deleted and then immediately restored.
Unfortunately after this replication phase the final state is identical
to the initial state, so when it loops around again (rate limited) it
repeats the same set of operations indefinitely.