consul/internal/radix/radix.go

572 lines
12 KiB
Go
Raw Normal View History

[COMPLIANCE] License changes (#18443) * Adding explicit MPL license for sub-package This directory and its subdirectories (packages) contain files licensed with the MPLv2 `LICENSE` file in this directory and are intentionally licensed separately from the BSL `LICENSE` file at the root of this repository. * Adding explicit MPL license for sub-package This directory and its subdirectories (packages) contain files licensed with the MPLv2 `LICENSE` file in this directory and are intentionally licensed separately from the BSL `LICENSE` file at the root of this repository. * Updating the license from MPL to Business Source License Going forward, this project will be licensed under the Business Source License v1.1. Please see our blog post for more details at <Blog URL>, FAQ at www.hashicorp.com/licensing-faq, and details of the license at www.hashicorp.com/bsl. * add missing license headers * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 * Update copyright file headers to BUSL-1.1 --------- Co-authored-by: hashicorp-copywrite[bot] <110428419+hashicorp-copywrite[bot]@users.noreply.github.com>
2023-08-11 13:12:13 +00:00
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: BUSL-1.1
package radix
import (
"sort"
"strings"
)
// WalkFn is used when walking the tree. Takes a
// key and value, returning if iteration should
// be terminated.
type WalkFn[T any] func(s string, v T) bool
// leafNode is used to represent a value
type leafNode[T any] struct {
key string
val T
}
// edge is used to represent an edge node
type edge[T any] struct {
label byte
node *node[T]
}
type node[T any] struct {
// leaf is used to store possible leaf
leaf *leafNode[T]
// prefix is the common prefix we ignore
prefix string
// Edges should be stored in-order for iteration.
// We avoid a fully materialized slice to save memory,
// since in most cases we expect to be sparse
edges edges[T]
}
func (n *node[T]) isLeaf() bool {
return n.leaf != nil
}
func (n *node[T]) addEdge(e edge[T]) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= e.label
})
n.edges = append(n.edges, edge[T]{})
copy(n.edges[idx+1:], n.edges[idx:])
n.edges[idx] = e
}
func (n *node[T]) updateEdge(label byte, node *node[T]) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
if idx < num && n.edges[idx].label == label {
n.edges[idx].node = node
return
}
panic("replacing missing edge")
}
func (n *node[T]) getEdge(label byte) *node[T] {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
if idx < num && n.edges[idx].label == label {
return n.edges[idx].node
}
return nil
}
func (n *node[T]) delEdge(label byte) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
if idx < num && n.edges[idx].label == label {
copy(n.edges[idx:], n.edges[idx+1:])
n.edges[len(n.edges)-1] = edge[T]{}
n.edges = n.edges[:len(n.edges)-1]
}
}
type edges[T any] []edge[T]
func (e edges[T]) Len() int {
return len(e)
}
func (e edges[T]) Less(i, j int) bool {
return e[i].label < e[j].label
}
func (e edges[T]) Swap(i, j int) {
e[i], e[j] = e[j], e[i]
}
func (e edges[T]) Sort() {
sort.Sort(e)
}
// Tree implements a radix tree. This can be treated as a
// Dictionary abstract data type. The main advantage over
// a standard hash map is prefix-based lookups and
// ordered iteration,
type Tree[T any] struct {
root *node[T]
size int
}
// New returns an empty Tree
func New[T any]() *Tree[T] {
return NewFromMap[T](nil)
}
// NewFromMap returns a new tree containing the keys
// from an existing map
func NewFromMap[T any](m map[string]T) *Tree[T] {
t := &Tree[T]{root: &node[T]{}}
for k, v := range m {
t.Insert(k, v)
}
return t
}
// Len is used to return the number of elements in the tree
func (t *Tree[T]) Len() int {
return t.size
}
// longestPrefix finds the length of the shared prefix
// of two strings
func longestPrefix(k1, k2 string) int {
max := len(k1)
if l := len(k2); l < max {
max = l
}
var i int
for i = 0; i < max; i++ {
if k1[i] != k2[i] {
break
}
}
return i
}
// Insert is used to add a newentry or update
// an existing entry. Returns true if an existing record is updated.
func (t *Tree[T]) Insert(s string, v T) (T, bool) {
var zeroVal T
var parent *node[T]
n := t.root
search := s
for {
// Handle key exhaution
if len(search) == 0 {
if n.isLeaf() {
old := n.leaf.val
n.leaf.val = v
return old, true
}
n.leaf = &leafNode[T]{
key: s,
val: v,
}
t.size++
return zeroVal, false
}
// Look for the edge
parent = n
n = n.getEdge(search[0])
// No edge, create one
if n == nil {
e := edge[T]{
label: search[0],
node: &node[T]{
leaf: &leafNode[T]{
key: s,
val: v,
},
prefix: search,
},
}
parent.addEdge(e)
t.size++
return zeroVal, false
}
// Determine longest prefix of the search key on match
commonPrefix := longestPrefix(search, n.prefix)
if commonPrefix == len(n.prefix) {
search = search[commonPrefix:]
continue
}
// Split the node
t.size++
child := &node[T]{
prefix: search[:commonPrefix],
}
parent.updateEdge(search[0], child)
// Restore the existing node
child.addEdge(edge[T]{
label: n.prefix[commonPrefix],
node: n,
})
n.prefix = n.prefix[commonPrefix:]
// Create a new leaf node
leaf := &leafNode[T]{
key: s,
val: v,
}
// If the new key is a subset, add to this node
search = search[commonPrefix:]
if len(search) == 0 {
child.leaf = leaf
return zeroVal, false
}
// Create a new edge for the node
child.addEdge(edge[T]{
label: search[0],
node: &node[T]{
leaf: leaf,
prefix: search,
},
})
return zeroVal, false
}
}
// Delete is used to delete a key, returning the previous
// value and if it was deleted
func (t *Tree[T]) Delete(s string) (T, bool) {
var zeroVal T
var parent *node[T]
var label byte
n := t.root
search := s
for {
// Check for key exhaution
if len(search) == 0 {
if !n.isLeaf() {
break
}
goto DELETE
}
// Look for an edge
parent = n
label = search[0]
n = n.getEdge(label)
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
return zeroVal, false
DELETE:
// Delete the leaf
leaf := n.leaf
n.leaf = nil
t.size--
// Check if we should delete this node from the parent
if parent != nil && len(n.edges) == 0 {
parent.delEdge(label)
}
// Check if we should merge this node
if n != t.root && len(n.edges) == 1 {
n.mergeChild()
}
// Check if we should merge the parent's other child
if parent != nil && parent != t.root && len(parent.edges) == 1 && !parent.isLeaf() {
parent.mergeChild()
}
return leaf.val, true
}
// DeletePrefix is used to delete the subtree under a prefix
// Returns how many nodes were deleted
// Use this to delete large subtrees efficiently
func (t *Tree[T]) DeletePrefix(s string) int {
return t.deletePrefix(nil, t.root, s)
}
// delete does a recursive deletion
func (t *Tree[T]) deletePrefix(parent, n *node[T], prefix string) int {
// Check for key exhaustion
if len(prefix) == 0 {
// Remove the leaf node
subTreeSize := 0
//recursively walk from all edges of the node to be deleted
recursiveWalk(n, func(s string, v T) bool {
subTreeSize++
return false
})
if n.isLeaf() {
n.leaf = nil
}
n.edges = nil // deletes the entire subtree
// Check if we should merge the parent's other child
if parent != nil && parent != t.root && len(parent.edges) == 1 && !parent.isLeaf() {
parent.mergeChild()
}
t.size -= subTreeSize
return subTreeSize
}
// Look for an edge
label := prefix[0]
child := n.getEdge(label)
if child == nil || (!strings.HasPrefix(child.prefix, prefix) && !strings.HasPrefix(prefix, child.prefix)) {
return 0
}
// Consume the search prefix
if len(child.prefix) > len(prefix) {
prefix = prefix[len(prefix):]
} else {
prefix = prefix[len(child.prefix):]
}
return t.deletePrefix(n, child, prefix)
}
func (n *node[T]) mergeChild() {
e := n.edges[0]
child := e.node
n.prefix = n.prefix + child.prefix
n.leaf = child.leaf
n.edges = child.edges
}
// Get is used to lookup a specific key, returning
// the value and if it was found
func (t *Tree[T]) Get(s string) (T, bool) {
var zeroVal T
n := t.root
search := s
for {
// Check for key exhaution
if len(search) == 0 {
if n.isLeaf() {
return n.leaf.val, true
}
break
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
return zeroVal, false
}
// LongestPrefix is like Get, but instead of an
// exact match, it will return the longest prefix match.
func (t *Tree[T]) LongestPrefix(s string) (string, T, bool) {
var zeroVal T
var last *leafNode[T]
n := t.root
search := s
for {
// Look for a leaf node
if n.isLeaf() {
last = n.leaf
}
// Check for key exhaution
if len(search) == 0 {
break
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
if last != nil {
return last.key, last.val, true
}
return "", zeroVal, false
}
// Minimum is used to return the minimum value in the tree
func (t *Tree[T]) Minimum() (string, T, bool) {
var zeroVal T
n := t.root
for {
if n.isLeaf() {
return n.leaf.key, n.leaf.val, true
}
if len(n.edges) > 0 {
n = n.edges[0].node
} else {
break
}
}
return "", zeroVal, false
}
// Maximum is used to return the maximum value in the tree
func (t *Tree[T]) Maximum() (string, T, bool) {
var zeroVal T
n := t.root
for {
if num := len(n.edges); num > 0 {
n = n.edges[num-1].node
continue
}
if n.isLeaf() {
return n.leaf.key, n.leaf.val, true
}
break
}
return "", zeroVal, false
}
// Walk is used to walk the tree
func (t *Tree[T]) Walk(fn WalkFn[T]) {
recursiveWalk(t.root, fn)
}
// WalkPrefix is used to walk the tree under a prefix
func (t *Tree[T]) WalkPrefix(prefix string, fn WalkFn[T]) {
n := t.root
search := prefix
for {
// Check for key exhaustion
if len(search) == 0 {
recursiveWalk(n, fn)
return
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
return
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
continue
}
if strings.HasPrefix(n.prefix, search) {
// Child may be under our search prefix
recursiveWalk(n, fn)
}
return
}
}
// WalkPath is used to walk the tree, but only visiting nodes
// from the root down to a given leaf. Where WalkPrefix walks
// all the entries *under* the given prefix, this walks the
// entries *above* the given prefix.
func (t *Tree[T]) WalkPath(path string, fn WalkFn[T]) {
n := t.root
search := path
for {
// Visit the leaf values if any
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
return
}
// Check for key exhaution
if len(search) == 0 {
return
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
return
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
}
// recursiveWalk is used to do a pre-order walk of a node
// recursively. Returns true if the walk should be aborted
func recursiveWalk[T any](n *node[T], fn WalkFn[T]) bool {
// Visit the leaf values if any
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
return true
}
// Recurse on the children
i := 0
k := len(n.edges) // keeps track of number of edges in previous iteration
for i < k {
e := n.edges[i]
if recursiveWalk(e.node, fn) {
return true
}
// It is a possibility that the WalkFn modified the node we are
// iterating on. If there are no more edges, mergeChild happened,
// so the last edge became the current node n, on which we'll
// iterate one last time.
if len(n.edges) == 0 {
return recursiveWalk(n, fn)
}
// If there are now less edges than in the previous iteration,
// then do not increment the loop index, since the current index
// points to a new edge. Otherwise, get to the next index.
if len(n.edges) >= k {
i++
}
k = len(n.edges)
}
return false
}
// ToMap is used to walk the tree and convert it into a map
func (t *Tree[T]) ToMap() map[string]T {
out := make(map[string]T, t.size)
t.Walk(func(k string, v T) bool {
out[k] = v
return false
})
return out
}