consul/agent/cache/cache.go

848 lines
31 KiB
Go
Raw Normal View History

// Package cache provides caching features for data from a Consul server.
//
// While this is similar in some ways to the "agent/ae" package, a key
// difference is that with anti-entropy, the agent is the authoritative
// source so it resolves differences the server may have. With caching (this
// package), the server is the authoritative source and we do our best to
// balance performance and correctness, depending on the type of data being
// requested.
//
// The types of data that can be cached is configurable via the Type interface.
// This allows specialized behavior for certain types of data. Each type of
// Consul data (CA roots, leaf certs, intentions, KV, catalog, etc.) will
// have to be manually implemented. This usually is not much work, see
// the "agent/cache-types" package.
package cache
import (
"context"
"fmt"
"io"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/armon/go-metrics"
"github.com/armon/go-metrics/prometheus"
"golang.org/x/time/rate"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/consul/lib/ttlcache"
)
//go:generate mockery -all -inpkg
// TODO(kit): remove the namespace from these once the metrics themselves change
var Gauges = []prometheus.GaugeDefinition{
{
Name: []string{"consul", "cache", "entries_count"},
Help: "Represents the number of entries in this cache.",
},
}
// TODO(kit): remove the namespace from these once the metrics themselves change
var Counters = []prometheus.CounterDefinition{
{
Name: []string{"consul", "cache", "bypass"},
Help: "Counts how many times a request bypassed the cache because no cache-key was provided.",
},
{
Name: []string{"consul", "cache", "fetch_success"},
Help: "Counts the number of successful fetches by the cache.",
},
{
Name: []string{"consul", "cache", "fetch_error"},
Help: "Counts the number of failed fetches by the cache.",
},
{
Name: []string{"consul", "cache", "evict_expired"},
Help: "Counts the number of expired entries that are evicted.",
},
}
2018-05-09 11:04:52 -07:00
// Constants related to refresh backoff. We probably don't ever need to
// make these configurable knobs since they primarily exist to lower load.
const (
CacheRefreshBackoffMin = 3 // 3 attempts before backing off
CacheRefreshMaxWait = 1 * time.Minute // maximum backoff wait time
// The following constants are default values for the cache entry
// rate limiter settings.
// DefaultEntryFetchRate is the default rate at which cache entries can
// be fetch. This defaults to not being unlimited
DefaultEntryFetchRate = rate.Inf
// DefaultEntryFetchMaxBurst is the number of cache entry fetches that can
// occur in a burst.
DefaultEntryFetchMaxBurst = 2
2018-05-09 11:04:52 -07:00
)
// Cache is a agent-local cache of Consul data. Create a Cache using the
// New function. A zero-value Cache is not ready for usage and will result
// in a panic.
//
// The types of data to be cached must be registered via RegisterType. Then,
// calls to Get specify the type and a Request implementation. The
// implementation of Request is usually done directly on the standard RPC
// struct in agent/structs. This API makes cache usage a mostly drop-in
// replacement for non-cached RPC calls.
//
// The cache is partitioned by ACL and datacenter. This allows the cache
// to be safe for multi-DC queries and for queries where the data is modified
// due to ACLs all without the cache having to have any clever logic, at
// the slight expense of a less perfect cache.
//
// The Cache exposes various metrics via go-metrics. Please view the source
// searching for "metrics." to see the various metrics exposed. These can be
// used to explore the performance of the cache.
type Cache struct {
2018-04-10 16:05:34 +01:00
// types stores the list of data types that the cache knows how to service.
// These can be dynamically registered with RegisterType.
typesLock sync.RWMutex
types map[string]typeEntry
2018-04-10 16:05:34 +01:00
2018-04-19 17:31:50 -07:00
// entries contains the actual cache data. Access to entries and
// entriesExpiryHeap must be protected by entriesLock.
//
// entriesExpiryHeap is a heap of *cacheEntry values ordered by
// expiry, with the soonest to expire being first in the list (index 0).
2018-04-10 16:05:34 +01:00
//
// NOTE(mitchellh): The entry map key is currently a string in the format
// of "<DC>/<ACL token>/<Request key>" in order to properly partition
// requests to different datacenters and ACL tokens. This format has some
// big drawbacks: we can't evict by datacenter, ACL token, etc. For an
// initial implementation this works and the tests are agnostic to the
2018-04-10 16:05:34 +01:00
// internal storage format so changing this should be possible safely.
2018-04-19 17:31:50 -07:00
entriesLock sync.RWMutex
entries map[string]cacheEntry
entriesExpiryHeap *ttlcache.ExpiryHeap
// stopped is used as an atomic flag to signal that the Cache has been
// discarded so background fetches and expiry processing should stop.
stopped uint32
// stopCh is closed when Close is called
stopCh chan struct{}
// options includes a per Cache Rate limiter specification to avoid performing too many queries
options Options
rateLimitContext context.Context
rateLimitCancel context.CancelFunc
}
// typeEntry is a single type that is registered with a Cache.
type typeEntry struct {
// Name that was used to register the Type
Name string
Type Type
Opts *RegisterOptions
}
// ResultMeta is returned from Get calls along with the value and can be used
// to expose information about the cache status for debugging or testing.
type ResultMeta struct {
// Hit indicates whether or not the request was a cache hit
Hit bool
// Age identifies how "stale" the result is. It's semantics differ based on
// whether or not the cache type performs background refresh or not as defined
// in https://www.consul.io/api/index.html#agent-caching.
//
// For background refresh types, Age is 0 unless the background blocking query
// is currently in a failed state and so not keeping up with the server's
// values. If it is non-zero it represents the time since the first failure to
// connect during background refresh, and is reset after a background request
// does manage to reconnect and either return successfully, or block for at
// least the yamux keepalive timeout of 30 seconds (which indicates the
// connection is OK but blocked as expected).
//
// For simple cache types, Age is the time since the result being returned was
// fetched from the servers.
Age time.Duration
// Index is the internal ModifyIndex for the cache entry. Not all types
// support blocking and all that do will likely have this in their result type
// already but this allows generic code to reason about whether cache values
// have changed.
Index uint64
}
// Options are options for the Cache.
type Options struct {
// EntryFetchMaxBurst max burst size of RateLimit for a single cache entry
EntryFetchMaxBurst int
// EntryFetchRate represents the max calls/sec for a single cache entry
EntryFetchRate rate.Limit
}
// Equal return true if both options are equivalent
func (o Options) Equal(other Options) bool {
return o.EntryFetchMaxBurst == other.EntryFetchMaxBurst && o.EntryFetchRate == other.EntryFetchRate
}
// applyDefaultValuesOnOptions set default values on options and returned updated value
func applyDefaultValuesOnOptions(options Options) Options {
if options.EntryFetchRate == 0.0 {
options.EntryFetchRate = DefaultEntryFetchRate
}
if options.EntryFetchMaxBurst == 0 {
options.EntryFetchMaxBurst = DefaultEntryFetchMaxBurst
}
return options
}
// New creates a new cache with the given RPC client and reasonable defaults.
// Further settings can be tweaked on the returned value.
func New(options Options) *Cache {
options = applyDefaultValuesOnOptions(options)
ctx, cancel := context.WithCancel(context.Background())
2018-04-19 17:31:50 -07:00
c := &Cache{
types: make(map[string]typeEntry),
entries: make(map[string]cacheEntry),
entriesExpiryHeap: ttlcache.NewExpiryHeap(),
stopCh: make(chan struct{}),
options: options,
rateLimitContext: ctx,
rateLimitCancel: cancel,
}
2018-04-19 17:31:50 -07:00
// Start the expiry watcher
go c.runExpiryLoop()
return c
}
// RegisterOptions are options that can be associated with a type being
// registered for the cache. This changes the behavior of the cache for
// this type.
type RegisterOptions struct {
2018-04-19 17:31:50 -07:00
// LastGetTTL is the time that the values returned by this type remain
// in the cache after the last get operation. If a value isn't accessed
// within this duration, the value is purged from the cache and
// background refreshing will cease.
LastGetTTL time.Duration
// Refresh configures whether the data is actively refreshed or if
// the data is only refreshed on an explicit Get. The default (false)
// is to only request data on explicit Get.
Refresh bool
// SupportsBlocking should be set to true if the type supports blocking queries.
// Types that do not support blocking queries will not be able to use
// background refresh nor will the cache attempt blocking fetches if the
// client requests them with MinIndex.
SupportsBlocking bool
2020-07-06 12:59:44 -04:00
// RefreshTimer is the time to sleep between attempts to refresh data.
// If this is zero, then data is refreshed immediately when a fetch
// is returned.
//
// Using different values for RefreshTimer and QueryTimeout, various
2020-07-06 12:59:44 -04:00
// "refresh" mechanisms can be implemented:
//
// * With a high timer duration and a low timeout, a timer-based
// refresh can be set that minimizes load on the Consul servers.
//
// * With a low timer and high timeout duration, a blocking-query-based
// refresh can be set so that changes in server data are recognized
// within the cache very quickly.
//
2020-07-06 12:59:44 -04:00
RefreshTimer time.Duration
// QueryTimeout is the default value for the maximum query time for a fetch
2020-07-06 12:59:44 -04:00
// operation. It is set as FetchOptions.Timeout so that cache.Type
// implementations can use it as the MaxQueryTime.
QueryTimeout time.Duration
}
// RegisterType registers a cacheable type.
//
// This makes the type available for Get but does not automatically perform
// any prefetching. In order to populate the cache, Get must be called.
func (c *Cache) RegisterType(n string, typ Type) {
opts := typ.RegisterOptions()
2018-04-19 17:31:50 -07:00
if opts.LastGetTTL == 0 {
opts.LastGetTTL = 72 * time.Hour // reasonable default is days
}
c.typesLock.Lock()
defer c.typesLock.Unlock()
c.types[n] = typeEntry{Name: n, Type: typ, Opts: &opts}
}
// ReloadOptions updates the cache with the new options
// return true if Cache is updated, false if already up to date
func (c *Cache) ReloadOptions(options Options) bool {
options = applyDefaultValuesOnOptions(options)
modified := !options.Equal(c.options)
if modified {
c.entriesLock.RLock()
defer c.entriesLock.RUnlock()
for _, entry := range c.entries {
if c.options.EntryFetchRate != options.EntryFetchRate {
entry.FetchRateLimiter.SetLimit(options.EntryFetchRate)
}
if c.options.EntryFetchMaxBurst != options.EntryFetchMaxBurst {
entry.FetchRateLimiter.SetBurst(options.EntryFetchMaxBurst)
}
}
c.options.EntryFetchRate = options.EntryFetchRate
c.options.EntryFetchMaxBurst = options.EntryFetchMaxBurst
}
return modified
}
// Get loads the data for the given type and request. If data satisfying the
// minimum index is present in the cache, it is returned immediately. Otherwise,
// this will block until the data is available or the request timeout is
// reached.
//
// Multiple Get calls for the same Request (matching CacheKey value) will
// block on a single network request.
//
// The timeout specified by the Request will be the timeout on the cache
// Get, and does not correspond to the timeout of any background data
// fetching. If the timeout is reached before data satisfying the minimum
// index is retrieved, the last known value (maybe nil) is returned. No
// error is returned on timeout. This matches the behavior of Consul blocking
// queries.
func (c *Cache) Get(ctx context.Context, t string, r Request) (interface{}, ResultMeta, error) {
c.typesLock.RLock()
tEntry, ok := c.types[t]
c.typesLock.RUnlock()
if !ok {
// Shouldn't happen given that we successfully fetched this at least
// once. But be robust against panics.
return nil, ResultMeta{}, fmt.Errorf("unknown type in cache: %s", t)
}
return c.getWithIndex(ctx, newGetOptions(tEntry, r))
}
// getOptions contains the arguments for a Get request. It is used in place of
// Request so that internal functions can modify Info without having to extract
// it from the Request each time.
type getOptions struct {
// Fetch is a closure over tEntry.Type.Fetch which provides the original
// Request from the caller.
Fetch func(opts FetchOptions) (FetchResult, error)
Info RequestInfo
TypeEntry typeEntry
}
func newGetOptions(tEntry typeEntry, r Request) getOptions {
return getOptions{
Fetch: func(opts FetchOptions) (FetchResult, error) {
return tEntry.Type.Fetch(opts, r)
},
Info: r.CacheInfo(),
TypeEntry: tEntry,
}
}
// getEntryLocked retrieves a cache entry and checks if it is ready to be
// returned given the other parameters. It reads from entries and the caller
// has to issue a read lock if necessary.
func (c *Cache) getEntryLocked(
tEntry typeEntry,
key string,
info RequestInfo,
) (entryExists bool, entryValid bool, entry cacheEntry) {
entry, ok := c.entries[key]
if !entry.Valid {
return ok, false, entry
}
// Check index is not specified or lower than value, or the type doesn't
// support blocking.
if tEntry.Opts.SupportsBlocking && info.MinIndex > 0 && info.MinIndex >= entry.Index {
// MinIndex was given and matches or is higher than current value so we
// ignore the cache and fallthrough to blocking on a new value below.
return true, false, entry
}
// Check MaxAge is not exceeded if this is not a background refreshing type
// and MaxAge was specified.
if !tEntry.Opts.Refresh && info.MaxAge > 0 && entryExceedsMaxAge(info.MaxAge, entry) {
return true, false, entry
}
// Check if re-validate is requested. If so the first time round the
// loop is not a hit but subsequent ones should be treated normally.
if !tEntry.Opts.Refresh && info.MustRevalidate {
return true, false, entry
}
return true, true, entry
}
func entryExceedsMaxAge(maxAge time.Duration, entry cacheEntry) bool {
return !entry.FetchedAt.IsZero() && maxAge < time.Since(entry.FetchedAt)
}
// getWithIndex implements the main Get functionality but allows internal
// callers (Watch) to manipulate the blocking index separately from the actual
// request object.
func (c *Cache) getWithIndex(ctx context.Context, r getOptions) (interface{}, ResultMeta, error) {
if r.Info.Key == "" {
metrics.IncrCounter([]string{"consul", "cache", "bypass"}, 1)
// If no key is specified, then we do not cache this request.
// Pass directly through to the backend.
result, err := r.Fetch(FetchOptions{MinIndex: r.Info.MinIndex})
return result.Value, ResultMeta{}, err
}
key := makeEntryKey(r.TypeEntry.Name, r.Info.Datacenter, r.Info.Token, r.Info.Key)
2018-04-10 16:05:34 +01:00
// First time through
first := true
// timeoutCh for watching our timeout
var timeoutCh <-chan time.Time
RETRY_GET:
// Get the current value
c.entriesLock.RLock()
_, entryValid, entry := c.getEntryLocked(r.TypeEntry, key, r.Info)
c.entriesLock.RUnlock()
if entryValid {
meta := ResultMeta{Index: entry.Index}
if first {
metrics.IncrCounter([]string{"consul", "cache", r.TypeEntry.Name, "hit"}, 1)
meta.Hit = true
}
// If refresh is enabled, calculate age based on whether the background
// routine is still connected.
if r.TypeEntry.Opts.Refresh {
meta.Age = time.Duration(0)
if !entry.RefreshLostContact.IsZero() {
meta.Age = time.Since(entry.RefreshLostContact)
}
} else {
// For non-background refresh types, the age is just how long since we
// fetched it last.
if !entry.FetchedAt.IsZero() {
meta.Age = time.Since(entry.FetchedAt)
}
}
// Touch the expiration and fix the heap.
c.entriesLock.Lock()
c.entriesExpiryHeap.Update(entry.Expiry.Index(), r.TypeEntry.Opts.LastGetTTL)
c.entriesLock.Unlock()
// We purposely do not return an error here since the cache only works with
// fetching values that either have a value or have an error, but not both.
// The Error may be non-nil in the entry in the case that an error has
// occurred _since_ the last good value, but we still want to return the
// good value to clients that are not requesting a specific version. The
// effect of this is that blocking clients will all see an error immediately
// without waiting a whole timeout to see it, but clients that just look up
// cache with an older index than the last valid result will still see the
// result and not the error here. I.e. the error is not "cached" without a
// new fetch attempt occurring, but the last good value can still be fetched
// from cache.
return entry.Value, meta, nil
}
// If this isn't our first time through and our last value has an error, then
// we return the error. This has the behavior that we don't sit in a retry
// loop getting the same error for the entire duration of the timeout.
// Instead, we make one effort to fetch a new value, and if there was an
// error, we return. Note that the invariant is that if both entry.Value AND
// entry.Error are non-nil, the error _must_ be more recent than the Value. In
// other words valid fetches should reset the error. See
// https://github.com/hashicorp/consul/issues/4480.
if !first && entry.Error != nil {
return entry.Value, ResultMeta{Index: entry.Index}, entry.Error
}
if first {
// We increment two different counters for cache misses depending on
// whether we're missing because we didn't have the data at all,
// or if we're missing because we're blocking on a set index.
missKey := "miss_block"
if r.Info.MinIndex == 0 {
missKey = "miss_new"
}
metrics.IncrCounter([]string{"consul", "cache", r.TypeEntry.Name, missKey}, 1)
}
// Set our timeout channel if we must
if r.Info.Timeout > 0 && timeoutCh == nil {
timeoutCh = time.After(r.Info.Timeout)
}
// At this point, we know we either don't have a value at all or the
// value we have is too old. We need to wait for new data.
waiterCh := c.fetch(key, r, true, 0, false)
// No longer our first time through
first = false
select {
case <-ctx.Done():
return nil, ResultMeta{}, ctx.Err()
case <-waiterCh:
// Our fetch returned, retry the get from the cache.
r.Info.MustRevalidate = false
goto RETRY_GET
case <-timeoutCh:
// Timeout on the cache read, just return whatever we have.
return entry.Value, ResultMeta{Index: entry.Index}, nil
}
}
func makeEntryKey(t, dc, token, key string) string {
return fmt.Sprintf("%s/%s/%s/%s", t, dc, token, key)
2018-04-10 16:05:34 +01:00
}
// fetch triggers a new background fetch for the given Request. If a
// background fetch is already running for a matching Request, the waiter
// channel for that request is returned. The effect of this is that there
// is only ever one blocking query for any matching requests.
2018-04-19 17:31:50 -07:00
//
// If allowNew is true then the fetch should create the cache entry
// if it doesn't exist. If this is false, then fetch will do nothing
// if the entry doesn't exist. This latter case is to support refreshing.
func (c *Cache) fetch(key string, r getOptions, allowNew bool, attempt uint, ignoreExisting bool) <-chan struct{} {
// We acquire a write lock because we may have to set Fetching to true.
c.entriesLock.Lock()
defer c.entriesLock.Unlock()
ok, entryValid, entry := c.getEntryLocked(r.TypeEntry, key, r.Info)
// This handles the case where a fetch succeeded after checking for its existence in
// getWithIndex. This ensures that we don't miss updates.
if ok && entryValid && !ignoreExisting {
ch := make(chan struct{})
close(ch)
return ch
}
2018-04-19 17:31:50 -07:00
// If we aren't allowing new values and we don't have an existing value,
// return immediately. We return an immediately-closed channel so nothing
// blocks.
if !ok && !allowNew {
ch := make(chan struct{})
close(ch)
return ch
2018-04-19 17:31:50 -07:00
}
// If we already have an entry and it is actively fetching, then return
// the currently active waiter.
if ok && entry.Fetching {
return entry.Waiter
}
// If we don't have an entry, then create it. The entry must be marked
// as invalid so that it isn't returned as a valid value for a zero index.
if !ok {
entry = cacheEntry{
Valid: false,
Waiter: make(chan struct{}),
FetchRateLimiter: rate.NewLimiter(
c.options.EntryFetchRate,
c.options.EntryFetchMaxBurst,
),
}
}
// Set that we're fetching to true, which makes it so that future
// identical calls to fetch will return the same waiter rather than
// perform multiple fetches.
entry.Fetching = true
2018-04-10 16:05:34 +01:00
c.entries[key] = entry
metrics.SetGauge([]string{"consul", "cache", "entries_count"}, float32(len(c.entries)))
tEntry := r.TypeEntry
// The actual Fetch must be performed in a goroutine.
go func() {
// If we have background refresh and currently are in "disconnected" state,
// waiting for a response might mean we mark our results as stale for up to
// 10 minutes (max blocking timeout) after connection is restored. To reduce
// that window, we assume that if the fetch takes more than 31 seconds then
// they are correctly blocking. We choose 31 seconds because yamux
// keepalives are every 30 seconds so the RPC should fail if the packets are
// being blackholed for more than 30 seconds.
var connectedTimer *time.Timer
if tEntry.Opts.Refresh && entry.Index > 0 && tEntry.Opts.QueryTimeout > 31*time.Second {
connectedTimer = time.AfterFunc(31*time.Second, func() {
c.entriesLock.Lock()
defer c.entriesLock.Unlock()
entry, ok := c.entries[key]
if !ok || entry.RefreshLostContact.IsZero() {
return
}
entry.RefreshLostContact = time.Time{}
c.entries[key] = entry
})
}
fOpts := FetchOptions{}
if tEntry.Opts.SupportsBlocking {
fOpts.MinIndex = entry.Index
fOpts.Timeout = tEntry.Opts.QueryTimeout
if fOpts.Timeout == 0 {
fOpts.Timeout = 10 * time.Minute
}
}
if entry.Valid {
fOpts.LastResult = &FetchResult{
Value: entry.Value,
State: entry.State,
Index: entry.Index,
}
}
if err := entry.FetchRateLimiter.Wait(c.rateLimitContext); err != nil {
if connectedTimer != nil {
connectedTimer.Stop()
}
entry.Error = fmt.Errorf("rateLimitContext canceled: %s", err.Error())
return
}
// Start building the new entry by blocking on the fetch.
result, err := r.Fetch(fOpts)
if connectedTimer != nil {
connectedTimer.Stop()
}
2018-04-19 17:31:50 -07:00
// Copy the existing entry to start.
newEntry := entry
newEntry.Fetching = false
// Importantly, always reset the Error. Having both Error and a Value that
// are non-nil is allowed in the cache entry but it indicates that the Error
// is _newer_ than the last good value. So if the err is nil then we need to
// reset to replace any _older_ errors and avoid them bubbling up. If the
// error is non-nil then we need to set it anyway and used to do it in the
// code below. See https://github.com/hashicorp/consul/issues/4480.
newEntry.Error = err
2018-04-19 17:31:50 -07:00
if result.Value != nil {
// A new value was given, so we create a brand new entry.
if !result.NotModified {
newEntry.Value = result.Value
}
newEntry.State = result.State
newEntry.Index = result.Index
newEntry.FetchedAt = time.Now()
if newEntry.Index < 1 {
// Less than one is invalid unless there was an error and in this case
// there wasn't since a value was returned. If a badly behaved RPC
// returns 0 when it has no data, we might get into a busy loop here. We
// set this to minimum of 1 which is safe because no valid user data can
// ever be written at raft index 1 due to the bootstrap process for
// raft. This insure that any subsequent background refresh request will
// always block, but allows the initial request to return immediately
// even if there is no data.
newEntry.Index = 1
}
// This is a valid entry with a result
newEntry.Valid = true
} else if result.State != nil && err == nil {
// Also set state if it's non-nil but Value is nil. This is important in the
// case we are returning nil due to a timeout or a transient error like rate
// limiting that we want to mask from the user - there is no result yet but
// we want to manage retrying internally before we return an error to user.
// The retrying state is in State so we need to still update that in the
// entry even if we don't have an actual result yet (e.g. hit a rate limit
// on first request for a leaf certificate).
newEntry.State = result.State
}
2018-05-09 11:04:52 -07:00
// Error handling
if err == nil {
labels := []metrics.Label{{Name: "result_not_modified", Value: strconv.FormatBool(result.NotModified)}}
// TODO(kit): move tEntry.Name to a label on the first write here and deprecate the second write
metrics.IncrCounterWithLabels([]string{"consul", "cache", "fetch_success"}, 1, labels)
metrics.IncrCounterWithLabels([]string{"consul", "cache", tEntry.Name, "fetch_success"}, 1, labels)
2018-05-09 11:04:52 -07:00
if result.Index > 0 {
// Reset the attempts counter so we don't have any backoff
attempt = 0
} else {
// Result having a zero index is an implicit error case. There was no
// actual error but it implies the RPC found in index (nothing written
// yet for that type) but didn't take care to return safe "1" index. We
// don't want to actually treat it like an error by setting
// newEntry.Error to something non-nil, but we should guard against 100%
// CPU burn hot loops caused by that case which will never block but
// also won't backoff either. So we treat it as a failed attempt so that
// at least the failure backoff will save our CPU while still
// periodically refreshing so normal service can resume when the servers
// actually have something to return from the RPC. If we get in this
// state it can be considered a bug in the RPC implementation (to ever
// return a zero index) however since it can happen this is a safety net
// for the future.
attempt++
}
// If we have refresh active, this successful response means cache is now
// "connected" and should not be stale. Reset the lost contact timer.
if tEntry.Opts.Refresh {
newEntry.RefreshLostContact = time.Time{}
}
2018-05-09 11:04:52 -07:00
} else {
// TODO(kit): Add tEntry.Name to label on fetch_error and deprecate second write
2018-05-09 11:04:52 -07:00
metrics.IncrCounter([]string{"consul", "cache", "fetch_error"}, 1)
metrics.IncrCounter([]string{"consul", "cache", tEntry.Name, "fetch_error"}, 1)
2018-05-09 11:04:52 -07:00
// Increment attempt counter
attempt++
2018-05-09 11:04:52 -07:00
// If we are refreshing and just failed, updated the lost contact time as
// our cache will be stale until we get successfully reconnected. We only
// set this on the first failure (if it's zero) so we can track how long
// it's been since we had a valid connection/up-to-date view of the state.
if tEntry.Opts.Refresh && newEntry.RefreshLostContact.IsZero() {
newEntry.RefreshLostContact = time.Now()
}
}
// Create a new waiter that will be used for the next fetch.
newEntry.Waiter = make(chan struct{})
2018-04-19 17:31:50 -07:00
// Set our entry
c.entriesLock.Lock()
// If this is a new entry (not in the heap yet), then setup the
// initial expiry information and insert. If we're already in
// the heap we do nothing since we're reusing the same entry.
if newEntry.Expiry == nil || newEntry.Expiry.Index() == ttlcache.NotIndexed {
newEntry.Expiry = c.entriesExpiryHeap.Add(key, tEntry.Opts.LastGetTTL)
2018-04-19 17:31:50 -07:00
}
2018-04-10 16:05:34 +01:00
c.entries[key] = newEntry
c.entriesLock.Unlock()
2018-04-19 17:31:50 -07:00
// Trigger the old waiter
close(entry.Waiter)
// If refresh is enabled, run the refresh in due time. The refresh
// below might block, but saves us from spawning another goroutine.
if tEntry.Opts.Refresh {
// Check if cache was stopped
if atomic.LoadUint32(&c.stopped) == 1 {
return
}
// If we're over the attempt minimum, start an exponential backoff.
if wait := backOffWait(attempt); wait > 0 {
time.Sleep(wait)
}
// If we have a timer, wait for it
if tEntry.Opts.RefreshTimer > 0 {
time.Sleep(tEntry.Opts.RefreshTimer)
}
// Trigger. The "allowNew" field is false because in the time we were
// waiting to refresh we may have expired and got evicted. If that
// happened, we don't want to create a new entry.
r.Info.MustRevalidate = false
r.Info.MinIndex = 0
c.fetch(key, r, false, attempt, true)
}
}()
return entry.Waiter
}
func backOffWait(failures uint) time.Duration {
if failures > CacheRefreshBackoffMin {
shift := failures - CacheRefreshBackoffMin
waitTime := CacheRefreshMaxWait
if shift < 31 {
waitTime = (1 << shift) * time.Second
}
if waitTime > CacheRefreshMaxWait {
waitTime = CacheRefreshMaxWait
}
return waitTime + lib.RandomStagger(waitTime)
}
return 0
}
2018-04-19 17:31:50 -07:00
// runExpiryLoop is a blocking function that watches the expiration
// heap and invalidates entries that have expired.
func (c *Cache) runExpiryLoop() {
for {
c.entriesLock.RLock()
timer := c.entriesExpiryHeap.Next()
2018-04-19 17:31:50 -07:00
c.entriesLock.RUnlock()
select {
case <-c.stopCh:
timer.Stop()
return
2018-04-19 17:31:50 -07:00
case <-c.entriesExpiryHeap.NotifyCh:
timer.Stop()
continue
2018-04-19 17:31:50 -07:00
case <-timer.Wait():
2018-04-19 17:31:50 -07:00
c.entriesLock.Lock()
entry := timer.Entry
if closer, ok := c.entries[entry.Key()].State.(io.Closer); ok {
closer.Close()
}
// Entry expired! Remove it.
delete(c.entries, entry.Key())
c.entriesExpiryHeap.Remove(entry.Index())
// Set some metrics
2018-04-19 17:31:50 -07:00
metrics.IncrCounter([]string{"consul", "cache", "evict_expired"}, 1)
metrics.SetGauge([]string{"consul", "cache", "entries_count"}, float32(len(c.entries)))
c.entriesLock.Unlock()
2018-04-19 17:31:50 -07:00
}
}
}
// Close stops any background work and frees all resources for the cache.
// Current Fetch requests are allowed to continue to completion and callers may
// still access the current cache values so coordination isn't needed with
// callers, however no background activity will continue. It's intended to close
// the cache at agent shutdown so no further requests should be made, however
// concurrent or in-flight ones won't break.
func (c *Cache) Close() error {
wasStopped := atomic.SwapUint32(&c.stopped, 1)
if wasStopped == 0 {
// First time only, close stop chan
close(c.stopCh)
c.rateLimitCancel()
}
return nil
}
// Prepopulate puts something in the cache manually. This is useful when the
// correct initial value is know and the cache shouldn't refetch the same thing
// on startup. It is used to set the ConnectRootCA and AgentLeafCert when
// AutoEncrypt.TLS is turned on. The cache itself cannot fetch that the first
// time because it requires a special RPCType. Subsequent runs are fine though.
func (c *Cache) Prepopulate(t string, res FetchResult, dc, token, k string) error {
key := makeEntryKey(t, dc, token, k)
newEntry := cacheEntry{
Valid: true,
Value: res.Value,
State: res.State,
Index: res.Index,
FetchedAt: time.Now(),
Waiter: make(chan struct{}),
FetchRateLimiter: rate.NewLimiter(
c.options.EntryFetchRate,
c.options.EntryFetchMaxBurst,
),
}
c.entriesLock.Lock()
c.entries[key] = newEntry
c.entriesLock.Unlock()
return nil
}