consul/command/acl/acl_helpers.go

260 lines
7.6 KiB
Go
Raw Normal View History

New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 12:04:07 -04:00
package acl
import (
"fmt"
"strings"
"github.com/hashicorp/consul/agent/structs"
New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 12:04:07 -04:00
"github.com/hashicorp/consul/api"
)
func GetTokenIDFromPartial(client *api.Client, partialID string) (string, error) {
if partialID == "anonymous" {
return structs.ACLTokenAnonymousID, nil
}
New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 12:04:07 -04:00
// the full UUID string was given
if len(partialID) == 36 {
return partialID, nil
}
tokens, _, err := client.ACL().TokenList(nil)
if err != nil {
return "", err
}
tokenID := ""
for _, token := range tokens {
if strings.HasPrefix(token.AccessorID, partialID) {
if tokenID != "" {
return "", fmt.Errorf("Partial token ID is not unique")
}
tokenID = token.AccessorID
}
}
if tokenID == "" {
return "", fmt.Errorf("No such token ID with prefix: %s", partialID)
}
return tokenID, nil
}
func GetPolicyIDFromPartial(client *api.Client, partialID string) (string, error) {
if partialID == "global-management" {
return structs.ACLPolicyGlobalManagementID, nil
}
New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 12:04:07 -04:00
// The full UUID string was given
if len(partialID) == 36 {
return partialID, nil
}
policies, _, err := client.ACL().PolicyList(nil)
if err != nil {
return "", err
}
policyID := ""
for _, policy := range policies {
if strings.HasPrefix(policy.ID, partialID) {
if policyID != "" {
return "", fmt.Errorf("Partial policy ID is not unique")
}
policyID = policy.ID
}
}
if policyID == "" {
return "", fmt.Errorf("No such policy ID with prefix: %s", partialID)
}
return policyID, nil
}
func GetPolicyIDByName(client *api.Client, name string) (string, error) {
if name == "" {
return "", fmt.Errorf("No name specified")
}
policies, _, err := client.ACL().PolicyList(nil)
if err != nil {
return "", err
}
for _, policy := range policies {
if policy.Name == name {
return policy.ID, nil
}
}
return "", fmt.Errorf("No such policy with name %s", name)
}
func GetRulesFromLegacyToken(client *api.Client, tokenID string, isSecret bool) (string, error) {
tokenID, err := GetTokenIDFromPartial(client, tokenID)
if err != nil {
return "", err
}
New ACLs (#4791) This PR is almost a complete rewrite of the ACL system within Consul. It brings the features more in line with other HashiCorp products. Obviously there is quite a bit left to do here but most of it is related docs, testing and finishing the last few commands in the CLI. I will update the PR description and check off the todos as I finish them over the next few days/week. Description At a high level this PR is mainly to split ACL tokens from Policies and to split the concepts of Authorization from Identities. A lot of this PR is mostly just to support CRUD operations on ACLTokens and ACLPolicies. These in and of themselves are not particularly interesting. The bigger conceptual changes are in how tokens get resolved, how backwards compatibility is handled and the separation of policy from identity which could lead the way to allowing for alternative identity providers. On the surface and with a new cluster the ACL system will look very similar to that of Nomads. Both have tokens and policies. Both have local tokens. The ACL management APIs for both are very similar. I even ripped off Nomad's ACL bootstrap resetting procedure. There are a few key differences though. Nomad requires token and policy replication where Consul only requires policy replication with token replication being opt-in. In Consul local tokens only work with token replication being enabled though. All policies in Nomad are globally applicable. In Consul all policies are stored and replicated globally but can be scoped to a subset of the datacenters. This allows for more granular access management. Unlike Nomad, Consul has legacy baggage in the form of the original ACL system. The ramifications of this are: A server running the new system must still support other clients using the legacy system. A client running the new system must be able to use the legacy RPCs when the servers in its datacenter are running the legacy system. The primary ACL DC's servers running in legacy mode needs to be a gate that keeps everything else in the entire multi-DC cluster running in legacy mode. So not only does this PR implement the new ACL system but has a legacy mode built in for when the cluster isn't ready for new ACLs. Also detecting that new ACLs can be used is automatic and requires no configuration on the part of administrators. This process is detailed more in the "Transitioning from Legacy to New ACL Mode" section below.
2018-10-19 12:04:07 -04:00
var token *api.ACLToken
if isSecret {
qopts := api.QueryOptions{
Token: tokenID,
}
token, _, err = client.ACL().TokenReadSelf(&qopts)
} else {
token, _, err = client.ACL().TokenRead(tokenID, nil)
}
if err != nil {
return "", fmt.Errorf("Error reading token: %v", err)
}
if token == nil {
return "", fmt.Errorf("Token not found for ID")
}
if token.Rules == "" {
return "", fmt.Errorf("Token is not a legacy token with rules")
}
return token.Rules, nil
}
func GetRoleIDFromPartial(client *api.Client, partialID string) (string, error) {
// the full UUID string was given
if len(partialID) == 36 {
return partialID, nil
}
roles, _, err := client.ACL().RoleList(nil)
if err != nil {
return "", err
}
roleID := ""
for _, role := range roles {
if strings.HasPrefix(role.ID, partialID) {
if roleID != "" {
return "", fmt.Errorf("Partial role ID is not unique")
}
roleID = role.ID
}
}
if roleID == "" {
return "", fmt.Errorf("No such role ID with prefix: %s", partialID)
}
return roleID, nil
}
func GetRoleIDByName(client *api.Client, name string) (string, error) {
if name == "" {
return "", fmt.Errorf("No name specified")
}
roles, _, err := client.ACL().RoleList(nil)
if err != nil {
return "", err
}
for _, role := range roles {
if role.Name == name {
return role.ID, nil
}
}
return "", fmt.Errorf("No such role with name %s", name)
}
func GetBindingRuleIDFromPartial(client *api.Client, partialID string) (string, error) {
// the full UUID string was given
if len(partialID) == 36 {
return partialID, nil
}
rules, _, err := client.ACL().BindingRuleList("", nil)
if err != nil {
return "", err
}
ruleID := ""
for _, rule := range rules {
if strings.HasPrefix(rule.ID, partialID) {
if ruleID != "" {
return "", fmt.Errorf("Partial rule ID is not unique")
}
ruleID = rule.ID
}
}
if ruleID == "" {
return "", fmt.Errorf("No such rule ID with prefix: %s", partialID)
}
return ruleID, nil
}
func ExtractServiceIdentities(serviceIdents []string) ([]*api.ACLServiceIdentity, error) {
var out []*api.ACLServiceIdentity
for _, svcidRaw := range serviceIdents {
parts := strings.Split(svcidRaw, ":")
switch len(parts) {
case 2:
out = append(out, &api.ACLServiceIdentity{
ServiceName: parts[0],
Datacenters: strings.Split(parts[1], ","),
})
case 1:
out = append(out, &api.ACLServiceIdentity{
ServiceName: parts[0],
})
default:
return nil, fmt.Errorf("Malformed -service-identity argument: %q", svcidRaw)
}
}
return out, nil
}
func ExtractNodeIdentities(nodeIdents []string) ([]*api.ACLNodeIdentity, error) {
var out []*api.ACLNodeIdentity
for _, nodeidRaw := range nodeIdents {
parts := strings.Split(nodeidRaw, ":")
switch len(parts) {
case 2:
out = append(out, &api.ACLNodeIdentity{
NodeName: parts[0],
Datacenter: parts[1],
})
default:
return nil, fmt.Errorf("Malformed -node-identity argument: %q", nodeidRaw)
}
}
return out, nil
}
// TestKubernetesJWT_A is a valid service account jwt extracted from a minikube setup.
//
// {
// "iss": "kubernetes/serviceaccount",
// "kubernetes.io/serviceaccount/namespace": "default",
// "kubernetes.io/serviceaccount/secret.name": "admin-token-qlz42",
// "kubernetes.io/serviceaccount/service-account.name": "admin",
// "kubernetes.io/serviceaccount/service-account.uid": "738bc251-6532-11e9-b67f-48e6c8b8ecb5",
// "sub": "system:serviceaccount:default:admin"
// }
const TestKubernetesJWT_A = "eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImFkbWluLXRva2VuLXFsejQyIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQubmFtZSI6ImFkbWluIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiNzM4YmMyNTEtNjUzMi0xMWU5LWI2N2YtNDhlNmM4YjhlY2I1Iiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50OmRlZmF1bHQ6YWRtaW4ifQ.ixMlnWrAG7NVuTTKu8cdcYfM7gweS3jlKaEsIBNGOVEjPE7rtXtgMkAwjQTdYR08_0QBjkgzy5fQC5ZNyglSwONJ-bPaXGvhoH1cTnRi1dz9H_63CfqOCvQP1sbdkMeRxNTGVAyWZT76rXoCUIfHP4LY2I8aab0KN9FTIcgZRF0XPTtT70UwGIrSmRpxW38zjiy2ymWL01cc5VWGhJqVysmWmYk3wNp0h5N57H_MOrz4apQR4pKaamzskzjLxO55gpbmZFC76qWuUdexAR7DT2fpbHLOw90atN_NlLMY-VrXyW3-Ei5EhYaVreMB9PSpKwkrA4jULITohV-sxpa1LA"
// TestKubernetesJWT_B is a valid service account jwt extracted from a minikube setup.
//
// {
// "iss": "kubernetes/serviceaccount",
// "kubernetes.io/serviceaccount/namespace": "default",
// "kubernetes.io/serviceaccount/secret.name": "demo-token-kmb9n",
// "kubernetes.io/serviceaccount/service-account.name": "demo",
// "kubernetes.io/serviceaccount/service-account.uid": "76091af4-4b56-11e9-ac4b-708b11801cbe",
// "sub": "system:serviceaccount:default:demo"
// }
const TestKubernetesJWT_B = "eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImRlbW8tdG9rZW4ta21iOW4iLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGVtbyIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6Ijc2MDkxYWY0LTRiNTYtMTFlOS1hYzRiLTcwOGIxMTgwMWNiZSIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDpkZWZhdWx0OmRlbW8ifQ.ZiAHjijBAOsKdum0Aix6lgtkLkGo9_Tu87dWQ5Zfwnn3r2FejEWDAnftTft1MqqnMzivZ9Wyyki5ZjQRmTAtnMPJuHC-iivqY4Wh4S6QWCJ1SivBv5tMZR79t5t8mE7R1-OHwst46spru1pps9wt9jsA04d3LpV0eeKYgdPTVaQKklxTm397kIMUugA6yINIBQ3Rh8eQqBgNwEmL4iqyYubzHLVkGkoP9MJikFI05vfRiHtYr-piXz6JFDzXMQj9rW6xtMmrBSn79ChbyvC5nz-Nj2rJPnHsb_0rDUbmXY5PpnMhBpdSH-CbZ4j8jsiib6DtaGJhVZeEQ1GjsFAZwQ"