Consul requires different amounts of compute resources, depending on cluster size and expected workload. This guide provides guidance on choosing compute resources.
---
# Server Performance
Since Consul servers run a [consensus protocol](/docs/internals/consensus.html) to
process all write operations and are contacted on nearly all read operations, server
performance is critical for overall throughput and health of a Consul cluster. Servers
are generally I/O bound for writes because the underlying Raft log store performs a sync
to disk every time an entry is appended. Servers are generally CPU bound for reads since
reads work from a fully in-memory data store that is optimized for concurrent access.
Consul is write limited by disk I/O and read limited by CPU. Memory requirements will be dependent on the total size of KV pairs stored and should be sized according to that data (as should the hard drive storage). The limit on a key’s value size is `512KB`.
-> Consul is write limited by disk I/O and read limited by CPU.
For **write-heavy** workloads, the total RAM available for overhead must approximately be equal to
RAM NEEDED = number of keys * average key size * 2-3x
Since writes must be synced to disk (persistent storage) on a quorum of servers before they are committed, deploying a disk with high write throughput (or an SSD) will enhance performance on the write side. ([Documentation](/docs/agent/options.html#_data_dir))
For a **read-heavy** workload, configure all Consul server agents with the `allow_stale` DNS option, or query the API with the `stale` [consistency mode](/api/features/consistency.html). By default, all queries made to the server are RPC forwarded to and serviced by the leader. By enabling stale reads, any server will respond to any query, thereby reducing overhead on the leader. Typically, the stale response is `100ms` or less from consistent mode but it drastically improves performance and reduces latency under high load.
If the leader server is out of memory or the disk is full, the server eventually stops responding, loses its election and cannot move past its last commit time. However, by configuring `max_stale` and setting it to a large value, Consul will continue to respond to queries during such outage scenarios. ([max_stale documentation](/docs/agent/options.html#max_stale)).
It should be noted that `stale` is not appropriate for coordination where strong consistency is important (i.e. locking or application leader election). For critical cases, the optional `consistent` API query mode is required for true linearizability; the trade off is that this turns a read into a full quorum write so requires more resources and takes longer.
**Read-heavy** clusters may take advantage of the [enhanced reading](/docs/enterprise/read-scale/index.html) feature (Enterprise) for better scalability. This feature allows additional servers to be introduced as non-voters. Being a non-voter, the server will still participate in data replication, but it will not block the leader from committing log entries.
Consul’s agents use network sockets for communicating with the other nodes (gossip) and with the server agent. In addition, file descriptors are also opened for watch handlers, health checks, and log files. For a **write heavy** cluster, the `ulimit` size must be increased from the default value (`1024`) to prevent the leader from running out of file descriptors.
To prevent any CPU spikes from a misconfigured client, RPC requests to the server should be [rate limited](/docs/agent/options.html#limits)
~> **NOTE** Rate limiting is configured on the client agent only.
In addition, two [performance indicators](/docs/agent/telemetry.html) —`consul.runtime.alloc_bytes` and `consul.runtime.heap_objects`— can help diagnose if the current sizing is not adequately meeting the load.