consul/vendor/k8s.io/apimachinery/pkg/util/clock/clock.go

385 lines
9.0 KiB
Go
Raw Normal View History

2018-09-05 20:46:10 +00:00
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package clock
import (
"sync"
"time"
)
2020-05-04 14:59:48 +00:00
// PassiveClock allows for injecting fake or real clocks into code
// that needs to read the current time but does not support scheduling
// activity in the future.
type PassiveClock interface {
Now() time.Time
Since(time.Time) time.Duration
}
2018-09-05 20:46:10 +00:00
// Clock allows for injecting fake or real clocks into code that
// needs to do arbitrary things based on time.
type Clock interface {
2020-05-04 14:59:48 +00:00
PassiveClock
2018-09-05 20:46:10 +00:00
After(time.Duration) <-chan time.Time
NewTimer(time.Duration) Timer
Sleep(time.Duration)
NewTicker(time.Duration) Ticker
}
// RealClock really calls time.Now()
type RealClock struct{}
// Now returns the current time.
func (RealClock) Now() time.Time {
return time.Now()
}
// Since returns time since the specified timestamp.
func (RealClock) Since(ts time.Time) time.Duration {
return time.Since(ts)
}
// Same as time.After(d).
func (RealClock) After(d time.Duration) <-chan time.Time {
return time.After(d)
}
func (RealClock) NewTimer(d time.Duration) Timer {
return &realTimer{
timer: time.NewTimer(d),
}
}
func (RealClock) NewTicker(d time.Duration) Ticker {
return &realTicker{
ticker: time.NewTicker(d),
}
}
func (RealClock) Sleep(d time.Duration) {
time.Sleep(d)
}
2020-05-04 14:59:48 +00:00
// FakePassiveClock implements PassiveClock, but returns an arbitrary time.
type FakePassiveClock struct {
2018-09-05 20:46:10 +00:00
lock sync.RWMutex
time time.Time
2020-05-04 14:59:48 +00:00
}
// FakeClock implements Clock, but returns an arbitrary time.
type FakeClock struct {
FakePassiveClock
2018-09-05 20:46:10 +00:00
// waiters are waiting for the fake time to pass their specified time
waiters []fakeClockWaiter
}
type fakeClockWaiter struct {
targetTime time.Time
stepInterval time.Duration
skipIfBlocked bool
destChan chan time.Time
2020-05-04 14:59:48 +00:00
}
func NewFakePassiveClock(t time.Time) *FakePassiveClock {
return &FakePassiveClock{
time: t,
}
2018-09-05 20:46:10 +00:00
}
func NewFakeClock(t time.Time) *FakeClock {
return &FakeClock{
2020-05-04 14:59:48 +00:00
FakePassiveClock: *NewFakePassiveClock(t),
2018-09-05 20:46:10 +00:00
}
}
// Now returns f's time.
2020-05-04 14:59:48 +00:00
func (f *FakePassiveClock) Now() time.Time {
2018-09-05 20:46:10 +00:00
f.lock.RLock()
defer f.lock.RUnlock()
return f.time
}
// Since returns time since the time in f.
2020-05-04 14:59:48 +00:00
func (f *FakePassiveClock) Since(ts time.Time) time.Duration {
2018-09-05 20:46:10 +00:00
f.lock.RLock()
defer f.lock.RUnlock()
return f.time.Sub(ts)
}
2020-05-04 14:59:48 +00:00
// Sets the time.
func (f *FakePassiveClock) SetTime(t time.Time) {
f.lock.Lock()
defer f.lock.Unlock()
f.time = t
}
2018-09-05 20:46:10 +00:00
// Fake version of time.After(d).
func (f *FakeClock) After(d time.Duration) <-chan time.Time {
f.lock.Lock()
defer f.lock.Unlock()
stopTime := f.time.Add(d)
ch := make(chan time.Time, 1) // Don't block!
f.waiters = append(f.waiters, fakeClockWaiter{
targetTime: stopTime,
destChan: ch,
})
return ch
}
// Fake version of time.NewTimer(d).
func (f *FakeClock) NewTimer(d time.Duration) Timer {
f.lock.Lock()
defer f.lock.Unlock()
stopTime := f.time.Add(d)
ch := make(chan time.Time, 1) // Don't block!
timer := &fakeTimer{
fakeClock: f,
waiter: fakeClockWaiter{
targetTime: stopTime,
destChan: ch,
},
}
f.waiters = append(f.waiters, timer.waiter)
return timer
}
func (f *FakeClock) NewTicker(d time.Duration) Ticker {
f.lock.Lock()
defer f.lock.Unlock()
tickTime := f.time.Add(d)
ch := make(chan time.Time, 1) // hold one tick
f.waiters = append(f.waiters, fakeClockWaiter{
targetTime: tickTime,
stepInterval: d,
skipIfBlocked: true,
destChan: ch,
})
return &fakeTicker{
c: ch,
}
}
// Move clock by Duration, notify anyone that's called After, Tick, or NewTimer
func (f *FakeClock) Step(d time.Duration) {
f.lock.Lock()
defer f.lock.Unlock()
f.setTimeLocked(f.time.Add(d))
}
// Sets the time.
func (f *FakeClock) SetTime(t time.Time) {
f.lock.Lock()
defer f.lock.Unlock()
f.setTimeLocked(t)
}
// Actually changes the time and checks any waiters. f must be write-locked.
func (f *FakeClock) setTimeLocked(t time.Time) {
f.time = t
newWaiters := make([]fakeClockWaiter, 0, len(f.waiters))
for i := range f.waiters {
w := &f.waiters[i]
if !w.targetTime.After(t) {
if w.skipIfBlocked {
select {
case w.destChan <- t:
default:
}
} else {
w.destChan <- t
}
if w.stepInterval > 0 {
for !w.targetTime.After(t) {
w.targetTime = w.targetTime.Add(w.stepInterval)
}
newWaiters = append(newWaiters, *w)
}
} else {
newWaiters = append(newWaiters, f.waiters[i])
}
}
f.waiters = newWaiters
}
// Returns true if After has been called on f but not yet satisfied (so you can
// write race-free tests).
func (f *FakeClock) HasWaiters() bool {
f.lock.RLock()
defer f.lock.RUnlock()
return len(f.waiters) > 0
}
func (f *FakeClock) Sleep(d time.Duration) {
f.Step(d)
}
// IntervalClock implements Clock, but each invocation of Now steps the clock forward the specified duration
type IntervalClock struct {
Time time.Time
Duration time.Duration
}
// Now returns i's time.
func (i *IntervalClock) Now() time.Time {
i.Time = i.Time.Add(i.Duration)
return i.Time
}
// Since returns time since the time in i.
func (i *IntervalClock) Since(ts time.Time) time.Duration {
return i.Time.Sub(ts)
}
// Unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) After(d time.Duration) <-chan time.Time {
panic("IntervalClock doesn't implement After")
}
// Unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) NewTimer(d time.Duration) Timer {
panic("IntervalClock doesn't implement NewTimer")
}
// Unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) NewTicker(d time.Duration) Ticker {
panic("IntervalClock doesn't implement NewTicker")
}
func (*IntervalClock) Sleep(d time.Duration) {
panic("IntervalClock doesn't implement Sleep")
}
// Timer allows for injecting fake or real timers into code that
// needs to do arbitrary things based on time.
type Timer interface {
C() <-chan time.Time
Stop() bool
Reset(d time.Duration) bool
}
// realTimer is backed by an actual time.Timer.
type realTimer struct {
timer *time.Timer
}
// C returns the underlying timer's channel.
func (r *realTimer) C() <-chan time.Time {
return r.timer.C
}
// Stop calls Stop() on the underlying timer.
func (r *realTimer) Stop() bool {
return r.timer.Stop()
}
// Reset calls Reset() on the underlying timer.
func (r *realTimer) Reset(d time.Duration) bool {
return r.timer.Reset(d)
}
// fakeTimer implements Timer based on a FakeClock.
type fakeTimer struct {
fakeClock *FakeClock
waiter fakeClockWaiter
}
// C returns the channel that notifies when this timer has fired.
func (f *fakeTimer) C() <-chan time.Time {
return f.waiter.destChan
}
2020-05-04 14:59:48 +00:00
// Stop conditionally stops the timer. If the timer has neither fired
// nor been stopped then this call stops the timer and returns true,
// otherwise this call returns false. This is like time.Timer::Stop.
2018-09-05 20:46:10 +00:00
func (f *fakeTimer) Stop() bool {
f.fakeClock.lock.Lock()
defer f.fakeClock.lock.Unlock()
2020-05-04 14:59:48 +00:00
// The timer has already fired or been stopped, unless it is found
// among the clock's waiters.
stopped := false
oldWaiters := f.fakeClock.waiters
newWaiters := make([]fakeClockWaiter, 0, len(oldWaiters))
seekChan := f.waiter.destChan
for i := range oldWaiters {
// Identify the timer's fakeClockWaiter by the identity of the
// destination channel, nothing else is necessarily unique and
// constant since the timer's creation.
if oldWaiters[i].destChan == seekChan {
stopped = true
} else {
newWaiters = append(newWaiters, oldWaiters[i])
2018-09-05 20:46:10 +00:00
}
}
f.fakeClock.waiters = newWaiters
2020-05-04 14:59:48 +00:00
return stopped
2018-09-05 20:46:10 +00:00
}
2020-05-04 14:59:48 +00:00
// Reset conditionally updates the firing time of the timer. If the
// timer has neither fired nor been stopped then this call resets the
// timer to the fake clock's "now" + d and returns true, otherwise
// this call returns false. This is like time.Timer::Reset.
2018-09-05 20:46:10 +00:00
func (f *fakeTimer) Reset(d time.Duration) bool {
f.fakeClock.lock.Lock()
defer f.fakeClock.lock.Unlock()
2020-05-04 14:59:48 +00:00
waiters := f.fakeClock.waiters
seekChan := f.waiter.destChan
for i := range waiters {
if waiters[i].destChan == seekChan {
waiters[i].targetTime = f.fakeClock.time.Add(d)
return true
}
}
return false
2018-09-05 20:46:10 +00:00
}
type Ticker interface {
C() <-chan time.Time
Stop()
}
type realTicker struct {
ticker *time.Ticker
}
func (t *realTicker) C() <-chan time.Time {
return t.ticker.C
}
func (t *realTicker) Stop() {
t.ticker.Stop()
}
type fakeTicker struct {
c <-chan time.Time
}
func (t *fakeTicker) C() <-chan time.Time {
return t.c
}
func (t *fakeTicker) Stop() {
}