consul/agent/connect/testing_ca.go

365 lines
12 KiB
Go
Raw Normal View History

package connect
import (
"bytes"
"crypto"
"crypto/rand"
"crypto/x509"
"crypto/x509/pkix"
"encoding/pem"
"fmt"
"math/big"
"net/url"
"sync/atomic"
"time"
"github.com/hashicorp/consul/agent/structs"
2018-03-19 20:29:14 -07:00
"github.com/hashicorp/go-uuid"
"github.com/mitchellh/go-testing-interface"
)
// TestClusterID is the Consul cluster ID for testing.
//
// NOTE: this is duplicated in the api package as testClusterID
const TestClusterID = "11111111-2222-3333-4444-555555555555"
// testCACounter is just an atomically incremented counter for creating
// unique names for the CA certs.
var testCACounter uint64
func testCA(t testing.T, xc *structs.CARoot, keyType string, keyBits int) *structs.CARoot {
var result structs.CARoot
2018-03-19 20:29:14 -07:00
result.Active = true
result.Name = fmt.Sprintf("Test CA %d", atomic.AddUint64(&testCACounter, 1))
// Create the private key we'll use for this CA cert.
signer, keyPEM := testPrivateKey(t, keyType, keyBits)
result.SigningKey = keyPEM
result.SigningKeyID = EncodeSigningKeyID(testKeyID(t, signer.Public()))
result.PrivateKeyType = keyType
result.PrivateKeyBits = keyBits
// The serial number for the cert
sn, err := testSerialNumber()
if err != nil {
t.Fatalf("error generating serial number: %s", err)
}
// The URI (SPIFFE compatible) for the cert
id := &SpiffeIDSigning{ClusterID: TestClusterID, Domain: "consul"}
// Create the CA cert
template := x509.Certificate{
2018-11-07 02:16:03 -08:00
SerialNumber: sn,
Subject: pkix.Name{CommonName: result.Name},
URIs: []*url.URL{id.URI()},
BasicConstraintsValid: true,
KeyUsage: x509.KeyUsageCertSign |
x509.KeyUsageCRLSign |
x509.KeyUsageDigitalSignature,
IsCA: true,
NotAfter: time.Now().AddDate(10, 0, 0),
NotBefore: time.Now(),
AuthorityKeyId: testKeyID(t, signer.Public()),
SubjectKeyId: testKeyID(t, signer.Public()),
}
bs, err := x509.CreateCertificate(
rand.Reader, &template, &template, signer.Public(), signer)
if err != nil {
t.Fatalf("error generating CA certificate: %s", err)
}
var buf bytes.Buffer
err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs})
if err != nil {
t.Fatalf("error encoding private key: %s", err)
}
result.RootCert = buf.String()
result.ID, err = CalculateCertFingerprint(result.RootCert)
if err != nil {
t.Fatalf("error generating CA ID fingerprint: %s", err)
}
result.SerialNumber = uint64(sn.Int64())
result.NotBefore = template.NotBefore.UTC()
result.NotAfter = template.NotAfter.UTC()
// If there is a prior CA to cross-sign with, then we need to create that
// and set it as the signing cert.
if xc != nil {
xccert, err := ParseCert(xc.RootCert)
if err != nil {
t.Fatalf("error parsing CA cert: %s", err)
}
xcsigner, err := ParseSigner(xc.SigningKey)
if err != nil {
t.Fatalf("error parsing signing key: %s", err)
}
// Set the authority key to be the previous one.
// NOTE(mitchellh): From Paul Banks: if we have to cross-sign a cert
// that came from outside (e.g. vault) we can't rely on them using the
// same KeyID hashing algo we do so we'd need to actually copy this
// from the xc cert's subjectKeyIdentifier extension.
template.AuthorityKeyId = testKeyID(t, xcsigner.Public())
// Create the new certificate where the parent is the previous
// CA, the public key is the new public key, and the signing private
// key is the old private key.
bs, err := x509.CreateCertificate(
rand.Reader, &template, xccert, signer.Public(), xcsigner)
if err != nil {
t.Fatalf("error generating CA certificate: %s", err)
}
var buf bytes.Buffer
err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs})
if err != nil {
t.Fatalf("error encoding private key: %s", err)
}
result.SigningCert = buf.String()
}
return &result
}
// TestCA creates a test CA certificate and signing key and returns it
// in the CARoot structure format. The returned CA will be set as Active = true.
//
// If xc is non-nil, then the returned certificate will have a signing cert
// that is cross-signed with the previous cert, and this will be set as
// SigningCert.
func TestCA(t testing.T, xc *structs.CARoot) *structs.CARoot {
return testCA(t, xc, DefaultPrivateKeyType, DefaultPrivateKeyBits)
}
// TestCAWithKeyType is similar to TestCA, except that it
// takes two additional arguments to override the default private key type and size.
func TestCAWithKeyType(t testing.T, xc *structs.CARoot, keyType string, keyBits int) *structs.CARoot {
return testCA(t, xc, keyType, keyBits)
}
func testLeaf(t testing.T, service string, root *structs.CARoot, keyType string, keyBits int) (string, string, error) {
// Parse the CA cert and signing key from the root
cert := root.SigningCert
if cert == "" {
cert = root.RootCert
}
caCert, err := ParseCert(cert)
if err != nil {
return "", "", fmt.Errorf("error parsing CA cert: %s", err)
}
caSigner, err := ParseSigner(root.SigningKey)
if err != nil {
return "", "", fmt.Errorf("error parsing signing key: %s", err)
}
// Build the SPIFFE ID
spiffeId := &SpiffeIDService{
Host: fmt.Sprintf("%s.consul", TestClusterID),
Namespace: "default",
Datacenter: "dc1",
Service: service,
}
// The serial number for the cert
sn, err := testSerialNumber()
if err != nil {
return "", "", fmt.Errorf("error generating serial number: %s", err)
}
// Generate fresh private key
pkSigner, pkPEM, err := GeneratePrivateKeyWithConfig(keyType, keyBits)
2018-05-09 17:15:29 +01:00
if err != nil {
return "", "", fmt.Errorf("failed to generate private key: %s", err)
}
sigAlgo := x509.ECDSAWithSHA256
if keyType == "rsa" {
sigAlgo = x509.SHA256WithRSA
2018-05-09 17:15:29 +01:00
}
// Cert template for generation
template := x509.Certificate{
SerialNumber: sn,
Subject: pkix.Name{CommonName: service},
URIs: []*url.URL{spiffeId.URI()},
SignatureAlgorithm: sigAlgo,
BasicConstraintsValid: true,
KeyUsage: x509.KeyUsageDataEncipherment |
x509.KeyUsageKeyAgreement |
x509.KeyUsageDigitalSignature |
x509.KeyUsageKeyEncipherment,
ExtKeyUsage: []x509.ExtKeyUsage{
x509.ExtKeyUsageClientAuth,
x509.ExtKeyUsageServerAuth,
},
NotAfter: time.Now().AddDate(10, 0, 0),
NotBefore: time.Now(),
AuthorityKeyId: testKeyID(t, caSigner.Public()),
SubjectKeyId: testKeyID(t, pkSigner.Public()),
}
// Create the certificate, PEM encode it and return that value.
var buf bytes.Buffer
bs, err := x509.CreateCertificate(
rand.Reader, &template, caCert, pkSigner.Public(), caSigner)
if err != nil {
return "", "", fmt.Errorf("error generating certificate: %s", err)
}
err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs})
if err != nil {
return "", "", fmt.Errorf("error encoding private key: %s", err)
}
return buf.String(), pkPEM, nil
}
// TestLeaf returns a valid leaf certificate and it's private key for the named
// service with the given CA Root.
func TestLeaf(t testing.T, service string, root *structs.CARoot) (string, string) {
certPEM, keyPEM, err := testLeaf(t, service, root, root.PrivateKeyType, root.PrivateKeyBits)
if err != nil {
t.Fatalf(err.Error())
}
return certPEM, keyPEM
}
2018-03-21 10:55:39 -07:00
// TestCSR returns a CSR to sign the given service along with the PEM-encoded
// private key for this certificate.
2019-08-27 17:45:58 -04:00
func TestCSR(t testing.T, uri CertURI) (string, string) {
template := &x509.CertificateRequest{
URIs: []*url.URL{uri.URI()},
SignatureAlgorithm: x509.ECDSAWithSHA256,
}
// Create the private key we'll use
signer, pkPEM := testPrivateKey(t, DefaultPrivateKeyType, DefaultPrivateKeyBits)
2018-03-21 10:55:39 -07:00
// Create the CSR itself
var csrBuf bytes.Buffer
bs, err := x509.CreateCertificateRequest(rand.Reader, template, signer)
if err != nil {
t.Fatalf("error creating CSR: %s", err)
}
err = pem.Encode(&csrBuf, &pem.Block{Type: "CERTIFICATE REQUEST", Bytes: bs})
if err != nil {
t.Fatalf("error encoding CSR: %s", err)
}
return csrBuf.String(), pkPEM
}
// testKeyID returns a KeyID from the given public key. This just calls
// KeyId but handles errors for tests.
func testKeyID(t testing.T, raw interface{}) []byte {
result, err := KeyId(raw)
if err != nil {
t.Fatalf("KeyId error: %s", err)
}
return result
}
// testPrivateKey creates an ECDSA based private key. Both a crypto.Signer and
// the key in PEM form are returned.
//
// NOTE(banks): this was memoized to save entropy during tests but it turns out
// crypto/rand will never block and always reads from /dev/urandom on unix OSes
// which does not consume entropy.
//
// If we find by profiling it's taking a lot of cycles we could optimize/cache
// again but we at least need to use different keys for each distinct CA (when
// multiple CAs are generated at once e.g. to test cross-signing) and a
// different one again for the leafs otherwise we risk tests that have false
// positives since signatures from different logical cert's keys are
// indistinguishable, but worse we build validation chains using AuthorityKeyID
// which will be the same for multiple CAs/Leafs. Also note that our UUID
// generator also reads from crypto rand and is called far more often during
// tests than this will be.
func testPrivateKey(t testing.T, keyType string, keyBits int) (crypto.Signer, string) {
pk, pkPEM, err := GeneratePrivateKeyWithConfig(keyType, keyBits)
if err != nil {
t.Fatalf("error generating private key: %s", err)
}
return pk, pkPEM
}
// testSerialNumber generates a serial number suitable for a certificate. For
// testing, this just sets it to a random number, but one that can fit in a
// uint64 since we use that in our datastructures and assume cert serials will
// fit in that for now.
func testSerialNumber() (*big.Int, error) {
return rand.Int(rand.Reader, (&big.Int{}).Exp(big.NewInt(2), big.NewInt(63), nil))
}
2018-03-19 20:29:14 -07:00
// testUUID generates a UUID for testing.
func testUUID(t testing.T) string {
ret, err := uuid.GenerateUUID()
if err != nil {
t.Fatalf("Unable to generate a UUID, %s", err)
}
return ret
}
// TestAgentRPC is an interface that an RPC client must implement. This is a
// helper interface that is implemented by the agent delegate so that test
// helpers can make RPCs without introducing an import cycle on `agent`.
type TestAgentRPC interface {
RPC(method string, args interface{}, reply interface{}) error
}
func testCAConfigSet(t testing.T, a TestAgentRPC,
ca *structs.CARoot, keyType string, keyBits int) *structs.CARoot {
t.Helper()
if ca == nil {
ca = TestCAWithKeyType(t, nil, keyType, keyBits)
}
newConfig := &structs.CAConfiguration{
Provider: "consul",
Config: map[string]interface{}{
"PrivateKey": ca.SigningKey,
"RootCert": ca.RootCert,
"RotationPeriod": 180 * 24 * time.Hour,
"PrivateKeyType": ca.PrivateKeyType,
"PrivateKeyBits": ca.PrivateKeyBits,
},
}
args := &structs.CARequest{
Datacenter: "dc1",
Config: newConfig,
}
var reply interface{}
err := a.RPC("ConnectCA.ConfigurationSet", args, &reply)
if err != nil {
t.Fatalf("failed to set test CA config: %s", err)
}
return ca
}
// TestCAConfigSet sets a CARoot returned by TestCA into the TestAgent state. It
// requires that TestAgent had connect enabled in it's config. If ca is nil, a
// new CA is created.
//
// It returns the CARoot passed or created.
//
// Note that we have to use an interface for the TestAgent.RPC method since we
// can't introduce an import cycle by importing `agent.TestAgent` here directly.
// It also means this will work in a few other places we mock that method.
func TestCAConfigSet(t testing.T, a TestAgentRPC,
ca *structs.CARoot) *structs.CARoot {
return testCAConfigSet(t, a, ca, DefaultPrivateKeyType, DefaultPrivateKeyBits)
}
// TestCAConfigSetWithKeyType is similar to TestCAConfigSet, except that it
// takes two additional arguments to override the default private key type and size.
func TestCAConfigSetWithKeyType(t testing.T, a TestAgentRPC,
ca *structs.CARoot, keyType string, keyBits int) *structs.CARoot {
return testCAConfigSet(t, a, ca, keyType, keyBits)
}