85 lines
2.9 KiB
Plaintext
Raw Normal View History

connect: fix failover through a mesh gateway to a remote datacenter (#6259) Failover is pushed entirely down to the data plane by creating envoy clusters and putting each successive destination in a different load assignment priority band. For example this shows that normally requests go to 1.2.3.4:8080 but when that fails they go to 6.7.8.9:8080: - name: foo load_assignment: cluster_name: foo policy: overprovisioning_factor: 100000 endpoints: - priority: 0 lb_endpoints: - endpoint: address: socket_address: address: 1.2.3.4 port_value: 8080 - priority: 1 lb_endpoints: - endpoint: address: socket_address: address: 6.7.8.9 port_value: 8080 Mesh gateways route requests based solely on the SNI header tacked onto the TLS layer. Envoy currently only lets you configure the outbound SNI header at the cluster layer. If you try to failover through a mesh gateway you ideally would configure the SNI value per endpoint, but that's not possible in envoy today. This PR introduces a simpler way around the problem for now: 1. We identify any target of failover that will use mesh gateway mode local or remote and then further isolate any resolver node in the compiled discovery chain that has a failover destination set to one of those targets. 2. For each of these resolvers we will perform a small measurement of comparative healths of the endpoints that come back from the health API for the set of primary target and serial failover targets. We walk the list of targets in order and if any endpoint is healthy we return that target, otherwise we move on to the next target. 3. The CDS and EDS endpoints both perform the measurements in (2) for the affected resolver nodes. 4. For CDS this measurement selects which TLS SNI field to use for the cluster (note the cluster is always going to be named for the primary target) 5. For EDS this measurement selects which set of endpoints will populate the cluster. Priority tiered failover is ignored. One of the big downsides to this approach to failover is that the failover detection and correction is going to be controlled by consul rather than deferring that entirely to the data plane as with the prior version. This also means that we are bound to only failover using official health signals and cannot make use of data plane signals like outlier detection to affect failover. In this specific scenario the lack of data plane signals is ok because the effectiveness is already muted by the fact that the ultimate destination endpoints will have their data plane signals scrambled when they pass through the mesh gateway wrapper anyway so we're not losing much. Another related fix is that we now use the endpoint health from the underlying service, not the health of the gateway (regardless of failover mode).
2019-08-05 13:30:35 -05:00
#!/usr/bin/env bats
load helpers
@test "s1 proxy is running correct version" {
assert_envoy_version 19000
}
@test "s1 proxy admin is up on :19000" {
retry_default curl -f -s localhost:19000/stats -o /dev/null
}
@test "s2 proxy admin is up on :19001" {
retry_default curl -f -s localhost:19001/stats -o /dev/null
}
@test "s1 proxy listener should be up and have right cert" {
assert_proxy_presents_cert_uri localhost:21000 s1
}
@test "s2 proxy listener should be up and have right cert" {
assert_proxy_presents_cert_uri localhost:21001 s2
}
@test "s2 proxies should be healthy in primary" {
assert_service_has_healthy_instances s2 1 primary
}
@test "s2 proxies should be healthy in secondary" {
assert_service_has_healthy_instances s2 1 secondary
}
Support Incremental xDS mode (#9855) This adds support for the Incremental xDS protocol when using xDS v3. This is best reviewed commit-by-commit and will not be squashed when merged. Union of all commit messages follows to give an overarching summary: xds: exclusively support incremental xDS when using xDS v3 Attempts to use SoTW via v3 will fail, much like attempts to use incremental via v2 will fail. Work around a strange older envoy behavior involving empty CDS responses over incremental xDS. xds: various cleanups and refactors that don't strictly concern the addition of incremental xDS support Dissolve the connectionInfo struct in favor of per-connection ResourceGenerators instead. Do a better job of ensuring the xds code uses a well configured logger that accurately describes the connected client. xds: pull out checkStreamACLs method in advance of a later commit xds: rewrite SoTW xDS protocol tests to use protobufs rather than hand-rolled json strings In the test we very lightly reuse some of the more boring protobuf construction helper code that is also technically under test. The important thing of the protocol tests is testing the protocol. The actual inputs and outputs are largely already handled by the xds golden output tests now so these protocol tests don't have to do double-duty. This also updates the SoTW protocol test to exclusively use xDS v2 which is the only variant of SoTW that will be supported in Consul 1.10. xds: default xds.Server.AuthCheckFrequency at use-time instead of construction-time
2021-04-29 13:54:05 -05:00
@test "gateway-secondary should be up and listening" {
retry_long nc -z consul-secondary-client:4432
Support Incremental xDS mode (#9855) This adds support for the Incremental xDS protocol when using xDS v3. This is best reviewed commit-by-commit and will not be squashed when merged. Union of all commit messages follows to give an overarching summary: xds: exclusively support incremental xDS when using xDS v3 Attempts to use SoTW via v3 will fail, much like attempts to use incremental via v2 will fail. Work around a strange older envoy behavior involving empty CDS responses over incremental xDS. xds: various cleanups and refactors that don't strictly concern the addition of incremental xDS support Dissolve the connectionInfo struct in favor of per-connection ResourceGenerators instead. Do a better job of ensuring the xds code uses a well configured logger that accurately describes the connected client. xds: pull out checkStreamACLs method in advance of a later commit xds: rewrite SoTW xDS protocol tests to use protobufs rather than hand-rolled json strings In the test we very lightly reuse some of the more boring protobuf construction helper code that is also technically under test. The important thing of the protocol tests is testing the protocol. The actual inputs and outputs are largely already handled by the xds golden output tests now so these protocol tests don't have to do double-duty. This also updates the SoTW protocol test to exclusively use xDS v2 which is the only variant of SoTW that will be supported in Consul 1.10. xds: default xds.Server.AuthCheckFrequency at use-time instead of construction-time
2021-04-29 13:54:05 -05:00
}
connect: fix failover through a mesh gateway to a remote datacenter (#6259) Failover is pushed entirely down to the data plane by creating envoy clusters and putting each successive destination in a different load assignment priority band. For example this shows that normally requests go to 1.2.3.4:8080 but when that fails they go to 6.7.8.9:8080: - name: foo load_assignment: cluster_name: foo policy: overprovisioning_factor: 100000 endpoints: - priority: 0 lb_endpoints: - endpoint: address: socket_address: address: 1.2.3.4 port_value: 8080 - priority: 1 lb_endpoints: - endpoint: address: socket_address: address: 6.7.8.9 port_value: 8080 Mesh gateways route requests based solely on the SNI header tacked onto the TLS layer. Envoy currently only lets you configure the outbound SNI header at the cluster layer. If you try to failover through a mesh gateway you ideally would configure the SNI value per endpoint, but that's not possible in envoy today. This PR introduces a simpler way around the problem for now: 1. We identify any target of failover that will use mesh gateway mode local or remote and then further isolate any resolver node in the compiled discovery chain that has a failover destination set to one of those targets. 2. For each of these resolvers we will perform a small measurement of comparative healths of the endpoints that come back from the health API for the set of primary target and serial failover targets. We walk the list of targets in order and if any endpoint is healthy we return that target, otherwise we move on to the next target. 3. The CDS and EDS endpoints both perform the measurements in (2) for the affected resolver nodes. 4. For CDS this measurement selects which TLS SNI field to use for the cluster (note the cluster is always going to be named for the primary target) 5. For EDS this measurement selects which set of endpoints will populate the cluster. Priority tiered failover is ignored. One of the big downsides to this approach to failover is that the failover detection and correction is going to be controlled by consul rather than deferring that entirely to the data plane as with the prior version. This also means that we are bound to only failover using official health signals and cannot make use of data plane signals like outlier detection to affect failover. In this specific scenario the lack of data plane signals is ok because the effectiveness is already muted by the fact that the ultimate destination endpoints will have their data plane signals scrambled when they pass through the mesh gateway wrapper anyway so we're not losing much. Another related fix is that we now use the endpoint health from the underlying service, not the health of the gateway (regardless of failover mode).
2019-08-05 13:30:35 -05:00
################
# PHASE 1: we show that by default requests are served from the primary
# Note: when failover is configured the cluster is named for the original
# service not any destination related to failover.
@test "s1 upstream should have healthy endpoints for s2 in both primary and failover" {
# in mesh gateway remote or local mode only the current leg of failover manifests in the load assignments
assert_upstream_has_endpoints_in_status 127.0.0.1:19000 failover-target~s2.default.primary HEALTHY 1
assert_upstream_has_endpoints_in_status 127.0.0.1:19000 failover-target~s2.default.primary UNHEALTHY 0
connect: fix failover through a mesh gateway to a remote datacenter (#6259) Failover is pushed entirely down to the data plane by creating envoy clusters and putting each successive destination in a different load assignment priority band. For example this shows that normally requests go to 1.2.3.4:8080 but when that fails they go to 6.7.8.9:8080: - name: foo load_assignment: cluster_name: foo policy: overprovisioning_factor: 100000 endpoints: - priority: 0 lb_endpoints: - endpoint: address: socket_address: address: 1.2.3.4 port_value: 8080 - priority: 1 lb_endpoints: - endpoint: address: socket_address: address: 6.7.8.9 port_value: 8080 Mesh gateways route requests based solely on the SNI header tacked onto the TLS layer. Envoy currently only lets you configure the outbound SNI header at the cluster layer. If you try to failover through a mesh gateway you ideally would configure the SNI value per endpoint, but that's not possible in envoy today. This PR introduces a simpler way around the problem for now: 1. We identify any target of failover that will use mesh gateway mode local or remote and then further isolate any resolver node in the compiled discovery chain that has a failover destination set to one of those targets. 2. For each of these resolvers we will perform a small measurement of comparative healths of the endpoints that come back from the health API for the set of primary target and serial failover targets. We walk the list of targets in order and if any endpoint is healthy we return that target, otherwise we move on to the next target. 3. The CDS and EDS endpoints both perform the measurements in (2) for the affected resolver nodes. 4. For CDS this measurement selects which TLS SNI field to use for the cluster (note the cluster is always going to be named for the primary target) 5. For EDS this measurement selects which set of endpoints will populate the cluster. Priority tiered failover is ignored. One of the big downsides to this approach to failover is that the failover detection and correction is going to be controlled by consul rather than deferring that entirely to the data plane as with the prior version. This also means that we are bound to only failover using official health signals and cannot make use of data plane signals like outlier detection to affect failover. In this specific scenario the lack of data plane signals is ok because the effectiveness is already muted by the fact that the ultimate destination endpoints will have their data plane signals scrambled when they pass through the mesh gateway wrapper anyway so we're not losing much. Another related fix is that we now use the endpoint health from the underlying service, not the health of the gateway (regardless of failover mode).
2019-08-05 13:30:35 -05:00
}
@test "s1 upstream should be able to connect to s2 via upstream s2 to start" {
assert_expected_fortio_name s2
}
@test "s1 upstream made 1 connection" {
assert_envoy_metric_at_least 127.0.0.1:19000 "cluster.failover-target~s2.default.primary.*cx_total" 1
connect: fix failover through a mesh gateway to a remote datacenter (#6259) Failover is pushed entirely down to the data plane by creating envoy clusters and putting each successive destination in a different load assignment priority band. For example this shows that normally requests go to 1.2.3.4:8080 but when that fails they go to 6.7.8.9:8080: - name: foo load_assignment: cluster_name: foo policy: overprovisioning_factor: 100000 endpoints: - priority: 0 lb_endpoints: - endpoint: address: socket_address: address: 1.2.3.4 port_value: 8080 - priority: 1 lb_endpoints: - endpoint: address: socket_address: address: 6.7.8.9 port_value: 8080 Mesh gateways route requests based solely on the SNI header tacked onto the TLS layer. Envoy currently only lets you configure the outbound SNI header at the cluster layer. If you try to failover through a mesh gateway you ideally would configure the SNI value per endpoint, but that's not possible in envoy today. This PR introduces a simpler way around the problem for now: 1. We identify any target of failover that will use mesh gateway mode local or remote and then further isolate any resolver node in the compiled discovery chain that has a failover destination set to one of those targets. 2. For each of these resolvers we will perform a small measurement of comparative healths of the endpoints that come back from the health API for the set of primary target and serial failover targets. We walk the list of targets in order and if any endpoint is healthy we return that target, otherwise we move on to the next target. 3. The CDS and EDS endpoints both perform the measurements in (2) for the affected resolver nodes. 4. For CDS this measurement selects which TLS SNI field to use for the cluster (note the cluster is always going to be named for the primary target) 5. For EDS this measurement selects which set of endpoints will populate the cluster. Priority tiered failover is ignored. One of the big downsides to this approach to failover is that the failover detection and correction is going to be controlled by consul rather than deferring that entirely to the data plane as with the prior version. This also means that we are bound to only failover using official health signals and cannot make use of data plane signals like outlier detection to affect failover. In this specific scenario the lack of data plane signals is ok because the effectiveness is already muted by the fact that the ultimate destination endpoints will have their data plane signals scrambled when they pass through the mesh gateway wrapper anyway so we're not losing much. Another related fix is that we now use the endpoint health from the underlying service, not the health of the gateway (regardless of failover mode).
2019-08-05 13:30:35 -05:00
}
################
# PHASE 2: we show that in failover requests are served from the secondary
#
@test "terminate instance of s2 primary envoy which should trigger failover to s2 secondary when tcp check fails" {
kill_envoy s2 primary
}
@test "s2 proxies should be unhealthy in primary" {
assert_service_has_healthy_instances s2 0 primary
}
@test "s1 upstream should have healthy endpoints for s2 secondary" {
# in mesh gateway remote or local mode only the current leg of failover manifests in the load assignments
assert_upstream_has_endpoints_in_status 127.0.0.1:19000 failover-target~s2.default.primary HEALTHY 0
assert_upstream_has_endpoints_in_status 127.0.0.1:19000 failover-target~s2.default.secondary HEALTHY 1
assert_upstream_has_endpoints_in_status 127.0.0.1:19000 failover-target~s2.default.secondary UNHEALTHY 0
connect: fix failover through a mesh gateway to a remote datacenter (#6259) Failover is pushed entirely down to the data plane by creating envoy clusters and putting each successive destination in a different load assignment priority band. For example this shows that normally requests go to 1.2.3.4:8080 but when that fails they go to 6.7.8.9:8080: - name: foo load_assignment: cluster_name: foo policy: overprovisioning_factor: 100000 endpoints: - priority: 0 lb_endpoints: - endpoint: address: socket_address: address: 1.2.3.4 port_value: 8080 - priority: 1 lb_endpoints: - endpoint: address: socket_address: address: 6.7.8.9 port_value: 8080 Mesh gateways route requests based solely on the SNI header tacked onto the TLS layer. Envoy currently only lets you configure the outbound SNI header at the cluster layer. If you try to failover through a mesh gateway you ideally would configure the SNI value per endpoint, but that's not possible in envoy today. This PR introduces a simpler way around the problem for now: 1. We identify any target of failover that will use mesh gateway mode local or remote and then further isolate any resolver node in the compiled discovery chain that has a failover destination set to one of those targets. 2. For each of these resolvers we will perform a small measurement of comparative healths of the endpoints that come back from the health API for the set of primary target and serial failover targets. We walk the list of targets in order and if any endpoint is healthy we return that target, otherwise we move on to the next target. 3. The CDS and EDS endpoints both perform the measurements in (2) for the affected resolver nodes. 4. For CDS this measurement selects which TLS SNI field to use for the cluster (note the cluster is always going to be named for the primary target) 5. For EDS this measurement selects which set of endpoints will populate the cluster. Priority tiered failover is ignored. One of the big downsides to this approach to failover is that the failover detection and correction is going to be controlled by consul rather than deferring that entirely to the data plane as with the prior version. This also means that we are bound to only failover using official health signals and cannot make use of data plane signals like outlier detection to affect failover. In this specific scenario the lack of data plane signals is ok because the effectiveness is already muted by the fact that the ultimate destination endpoints will have their data plane signals scrambled when they pass through the mesh gateway wrapper anyway so we're not losing much. Another related fix is that we now use the endpoint health from the underlying service, not the health of the gateway (regardless of failover mode).
2019-08-05 13:30:35 -05:00
}
@test "reset envoy statistics" {
reset_envoy_metrics 127.0.0.1:19000
}
connect: fix failover through a mesh gateway to a remote datacenter (#6259) Failover is pushed entirely down to the data plane by creating envoy clusters and putting each successive destination in a different load assignment priority band. For example this shows that normally requests go to 1.2.3.4:8080 but when that fails they go to 6.7.8.9:8080: - name: foo load_assignment: cluster_name: foo policy: overprovisioning_factor: 100000 endpoints: - priority: 0 lb_endpoints: - endpoint: address: socket_address: address: 1.2.3.4 port_value: 8080 - priority: 1 lb_endpoints: - endpoint: address: socket_address: address: 6.7.8.9 port_value: 8080 Mesh gateways route requests based solely on the SNI header tacked onto the TLS layer. Envoy currently only lets you configure the outbound SNI header at the cluster layer. If you try to failover through a mesh gateway you ideally would configure the SNI value per endpoint, but that's not possible in envoy today. This PR introduces a simpler way around the problem for now: 1. We identify any target of failover that will use mesh gateway mode local or remote and then further isolate any resolver node in the compiled discovery chain that has a failover destination set to one of those targets. 2. For each of these resolvers we will perform a small measurement of comparative healths of the endpoints that come back from the health API for the set of primary target and serial failover targets. We walk the list of targets in order and if any endpoint is healthy we return that target, otherwise we move on to the next target. 3. The CDS and EDS endpoints both perform the measurements in (2) for the affected resolver nodes. 4. For CDS this measurement selects which TLS SNI field to use for the cluster (note the cluster is always going to be named for the primary target) 5. For EDS this measurement selects which set of endpoints will populate the cluster. Priority tiered failover is ignored. One of the big downsides to this approach to failover is that the failover detection and correction is going to be controlled by consul rather than deferring that entirely to the data plane as with the prior version. This also means that we are bound to only failover using official health signals and cannot make use of data plane signals like outlier detection to affect failover. In this specific scenario the lack of data plane signals is ok because the effectiveness is already muted by the fact that the ultimate destination endpoints will have their data plane signals scrambled when they pass through the mesh gateway wrapper anyway so we're not losing much. Another related fix is that we now use the endpoint health from the underlying service, not the health of the gateway (regardless of failover mode).
2019-08-05 13:30:35 -05:00
@test "s1 upstream should be able to connect to s2 in secondary now" {
assert_expected_fortio_name s2-secondary
}
@test "s1 upstream made 1 connection again" {
assert_envoy_metric_at_least 127.0.0.1:19000 "cluster.failover-target~s2.default.secondary.*cx_total" 1
connect: fix failover through a mesh gateway to a remote datacenter (#6259) Failover is pushed entirely down to the data plane by creating envoy clusters and putting each successive destination in a different load assignment priority band. For example this shows that normally requests go to 1.2.3.4:8080 but when that fails they go to 6.7.8.9:8080: - name: foo load_assignment: cluster_name: foo policy: overprovisioning_factor: 100000 endpoints: - priority: 0 lb_endpoints: - endpoint: address: socket_address: address: 1.2.3.4 port_value: 8080 - priority: 1 lb_endpoints: - endpoint: address: socket_address: address: 6.7.8.9 port_value: 8080 Mesh gateways route requests based solely on the SNI header tacked onto the TLS layer. Envoy currently only lets you configure the outbound SNI header at the cluster layer. If you try to failover through a mesh gateway you ideally would configure the SNI value per endpoint, but that's not possible in envoy today. This PR introduces a simpler way around the problem for now: 1. We identify any target of failover that will use mesh gateway mode local or remote and then further isolate any resolver node in the compiled discovery chain that has a failover destination set to one of those targets. 2. For each of these resolvers we will perform a small measurement of comparative healths of the endpoints that come back from the health API for the set of primary target and serial failover targets. We walk the list of targets in order and if any endpoint is healthy we return that target, otherwise we move on to the next target. 3. The CDS and EDS endpoints both perform the measurements in (2) for the affected resolver nodes. 4. For CDS this measurement selects which TLS SNI field to use for the cluster (note the cluster is always going to be named for the primary target) 5. For EDS this measurement selects which set of endpoints will populate the cluster. Priority tiered failover is ignored. One of the big downsides to this approach to failover is that the failover detection and correction is going to be controlled by consul rather than deferring that entirely to the data plane as with the prior version. This also means that we are bound to only failover using official health signals and cannot make use of data plane signals like outlier detection to affect failover. In this specific scenario the lack of data plane signals is ok because the effectiveness is already muted by the fact that the ultimate destination endpoints will have their data plane signals scrambled when they pass through the mesh gateway wrapper anyway so we're not losing much. Another related fix is that we now use the endpoint health from the underlying service, not the health of the gateway (regardless of failover mode).
2019-08-05 13:30:35 -05:00
}