constantine/tests/t_finite_fields_mulsquare.nim

259 lines
7.0 KiB
Nim

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
std/[unittest, times],
# Internal
../constantine/arithmetic,
../constantine/io/[io_bigints, io_fields],
../constantine/config/[curves, common, type_bigint],
# Test utilities
../helpers/prng_unsafe
const Iters = 24
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "\n------------------------------------------------------\n"
echo "test_finite_fields_mulsquare xoshiro512** seed: ", seed
static: doAssert defined(testingCurves), "This modules requires the -d:testingCurves compile option"
proc sanity(C: static Curve) =
test "Squaring 0,1,2 with "& $Curve(C) & " [FastSquaring = " & $C.canUseNoCarryMontySquare & "]":
block: # 0² mod
var n: Fp[C]
n.fromUint(0'u32)
let expected = n
# Out-of-place
var r: Fp[C]
r.square(n)
# In-place
n.square()
check:
bool(r == expected)
bool(n == expected)
block: # 1² mod
var n: Fp[C]
n.fromUint(1'u32)
let expected = n
# Out-of-place
var r: Fp[C]
r.square(n)
# In-place
n.square()
check:
bool(r == expected)
bool(n == expected)
block: # 2² mod
var n, expected: Fp[C]
n.fromUint(2'u32)
expected.fromUint(4'u32)
# Out-of-place
var r: Fp[C]
r.square(n)
# In-place
n.square()
check:
bool(r == expected)
bool(n == expected)
proc mainSanity() =
suite "Modular squaring is consistent with multiplication on special elements" & " [" & $WordBitwidth & "-bit mode]":
sanity Fake101
sanity Mersenne61
sanity Mersenne127
sanity P224 # P224 uses the fast-path with 64-bit words and the slow path with 32-bit words
sanity P256
sanity BLS12_381
mainSanity()
proc mainSelectCases() =
suite "Modular Squaring: selected tricky cases" & " [" & $WordBitwidth & "-bit mode]":
test "P-256 [FastSquaring = " & $P256.canUseNoCarryMontySquare & "]":
block:
# Triggered an issue in the (t[N+1], t[N]) = t[N] + (A1, A0)
# between the squaring and reduction step, with t[N+1] and A1 being carry bits.
var a: Fp[P256]
a.fromHex"0xa0da36b4885df98997ee89a22a7ceb64fa431b2ecc87342fc083587da3d6ebc7"
var r_mul, r_sqr: Fp[P256]
r_mul.prod(a, a)
r_sqr.square(a)
doAssert bool(r_mul == r_sqr)
mainSelectCases()
proc randomCurve(C: static Curve) =
let a = rng.random_unsafe(Fp[C])
var r_mul, r_sqr: Fp[C]
r_mul.prod(a, a)
r_sqr.square(a)
doAssert bool(r_mul == r_sqr)
proc randomHighHammingWeight(C: static Curve) =
let a = rng.random_highHammingWeight(Fp[C])
var r_mul, r_sqr: Fp[C]
r_mul.prod(a, a)
r_sqr.square(a)
doAssert bool(r_mul == r_sqr)
proc random_long01Seq(C: static Curve) =
let a = rng.random_long01Seq(Fp[C])
var r_mul, r_sqr: Fp[C]
r_mul.prod(a, a)
r_sqr.square(a)
doAssert bool(r_mul == r_sqr)
suite "Random Modular Squaring is consistent with Modular Multiplication" & " [" & $WordBitwidth & "-bit mode]":
test "Random squaring mod P-224 [FastSquaring = " & $P224.canUseNoCarryMontySquare & "]":
for _ in 0 ..< Iters:
randomCurve(P224)
for _ in 0 ..< Iters:
randomHighHammingWeight(P224)
for _ in 0 ..< Iters:
random_long01Seq(P224)
test "Random squaring mod P-256 [FastSquaring = " & $P256.canUseNoCarryMontySquare & "]":
for _ in 0 ..< Iters:
randomCurve(P256)
for _ in 0 ..< Iters:
randomHighHammingWeight(P256)
for _ in 0 ..< Iters:
random_long01Seq(P256)
test "Random squaring mod BLS12_381 [FastSquaring = " & $BLS12_381.canUseNoCarryMontySquare & "]":
for _ in 0 ..< Iters:
randomCurve(BLS12_381)
for _ in 0 ..< Iters:
randomHighHammingWeight(BLS12_381)
for _ in 0 ..< Iters:
random_long01Seq(BLS12_381)
suite "Modular squaring - bugs highlighted by property-based testing":
test "a² == (-a)² on for Fp[2^127 - 1] - #61":
var a{.noInit.}: Fp[Mersenne127]
a.fromHex"0x75bfffefbfffffff7fd9dfd800000000"
var na{.noInit.}: Fp[Mersenne127]
na.neg(a)
a.square()
na.square()
check:
bool(a == na)
var a2{.noInit.}, na2{.noInit.}: Fp[Mersenne127]
a2.fromHex"0x75bfffefbfffffff7fd9dfd800000000"
na2.neg(a2)
a2 *= a2
na2 *= na2
check:
bool(a2 == na2)
bool(a2 == a)
bool(a2 == na)
test "a² == (-a)² on for Fp[2^127 - 1] - #62":
var a{.noInit.}: Fp[Mersenne127]
a.fromHex"0x7ff7ffffffffffff1dfb7fafc0000000"
var na{.noInit.}: Fp[Mersenne127]
na.neg(a)
a.square()
na.square()
check:
bool(a == na)
var a2{.noInit.}, na2{.noInit.}: Fp[Mersenne127]
a2.fromHex"0x7ff7ffffffffffff1dfb7fafc0000000"
na2.neg(a2)
a2 *= a2
na2 *= na2
check:
bool(a2 == na2)
bool(a2 == a)
bool(a2 == na)
test "32-bit fast squaring on BLS12-381 - #42":
# x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)
# p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
# Fp = GF(p)
# a = Fp(Integer('0x091F02EFA1C9B99C004329E94CD3C6B308164CBE02037333D78B6C10415286F7C51B5CD7F917F77B25667AB083314B1B'))
# a2 = a*a
# print('a²: ' + Integer(a2).hex())
var a{.noInit.}, expected{.noInit.}: Fp[BLS12_381]
a.fromHex"0x091F02EFA1C9B99C004329E94CD3C6B308164CBE02037333D78B6C10415286F7C51B5CD7F917F77B25667AB083314B1B"
expected.fromHex"0x129e84715b197f76766c8604002cfc287fbe3d16774e18c599853ce48d03dc26bf882e159323ee3d25e52e4809ff4ccc"
var a2mul = a
var a2sqr = a
a2mul.prod(a, a)
a2sqr.square(a)
check:
bool(a2mul == expected)
bool(a2sqr == expected)
test "32-bit fast squaring on BLS12-381 - #43":
# x = -(2^63 + 2^62 + 2^60 + 2^57 + 2^48 + 2^16)
# p = (x - 1)^2 * (x^4 - x^2 + 1)//3 + x
# Fp = GF(p)
# a = Fp(Integer('0x0B7C8AFE5D43E9A973AF8649AD8C733B97D06A78CFACD214CBE9946663C3F682362E0605BC8318714305B249B505AFD9'))
# a2 = a*a
# print('a²: ' + Integer(a2).hex())
var a{.noInit.}, expected{.noInit.}: Fp[BLS12_381]
a.fromHex"0x0B7C8AFE5D43E9A973AF8649AD8C733B97D06A78CFACD214CBE9946663C3F682362E0605BC8318714305B249B505AFD9"
expected.fromHex"0x94b12b599042198a4ad5ad05ed4da1a3332fe50518b6eb718d258d7e3c60a48a89f7417a0b413b92537c24c9e94e038"
var a2mul = a
var a2sqr = a
a2mul.prod(a, a)
a2sqr.square(a)
check:
bool(a2mul == expected)
bool(a2sqr == expected)