constantine/tests/test_fp12.nim

473 lines
11 KiB
Nim
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Constantine
# Copyright (c) 2018-2019 Status Research & Development GmbH
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
import
# Standard library
unittest, times, random,
# Internals
../constantine/towers,
../constantine/config/[common, curves],
../constantine/arithmetic,
# Test utilities
../helpers/prng
const Iters = 128
var rng: RngState
let seed = uint32(getTime().toUnix() and (1'i64 shl 32 - 1)) # unixTime mod 2^32
rng.seed(seed)
echo "test_fp12 xoshiro512** seed: ", seed
# Import: wrap in field element tests in small procedures
# otherwise they will become globals,
# and will create binary size issues.
# Also due to Nim stack scanning,
# having too many elements on the stack (a couple kB)
# will significantly slow down testing (100x is possible)
suite "𝔽p12 = 𝔽p6[√∛(1+𝑖)]":
test "Squaring 1 returns 1":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp12[C]
O.setOne()
O
block:
var r{.noinit.}: Fp12[C]
r.square(One)
check: bool(r == One)
# block:
# var r{.noinit.}: Fp12[C]
# r.prod(One, One)
# check: bool(r == One)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring 2 returns 4":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp12[C]
O.setOne()
O
var Two: Fp12[C]
Two.double(One)
var Four: Fp12[C]
Four.double(Two)
block:
var r: Fp12[C]
r.square(Two)
check: bool(r == Four)
# block:
# var r: Fp12[C]
# r.prod(Two, Two)
# check: bool(r == Four)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring 3 returns 9":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp12[C]
O.setOne()
O
var Three: Fp12[C]
for _ in 0 ..< 3:
Three += One
var Nine: Fp12[C]
for _ in 0 ..< 9:
Nine += One
block:
var u: Fp12[C]
u.square(Three)
check: bool(u == Nine)
# block:
# var u: Fp12[C]
# u.prod(Three, Three)
# check: bool(u == Nine)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring -3 returns 9":
template test(C: static Curve) =
block:
proc testInstance() =
let One = block:
var O{.noInit.}: Fp12[C]
O.setOne()
O
var MinusThree: Fp12[C]
for _ in 0 ..< 3:
MinusThree -= One
var Nine: Fp12[C]
for _ in 0 ..< 9:
Nine += One
block:
var u: Fp12[C]
u.square(MinusThree)
check: bool(u == Nine)
# block:
# var u: Fp12[C]
# u.prod(MinusThree, MinusThree)
# check: bool(u == Nine)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Multiplication by 0 and 1":
template test(C: static Curve, body: untyped) =
block:
proc testInstance() =
let Zero {.inject, used.} = block:
var Z{.noInit.}: Fp12[C]
Z.setZero()
Z
let One {.inject, used.} = block:
var O{.noInit.}: Fp12[C]
O.setOne()
O
for _ in 0 ..< Iters:
let x {.inject.} = rng.random(Fp12[C])
var r{.noinit, inject.}: Fp12[C]
body
testInstance()
# test(BN254_Nogami):
# r.prod(x, Zero)
# check: bool(r == Zero)
# test(BN254_Nogami):
# r.prod(Zero, x)
# check: bool(r == Zero)
# test(BN254_Nogami):
# r.prod(x, One)
# check: bool(r == x)
# test(BN254_Nogami):
# r.prod(One, x)
# check: bool(r == x)
test(BN254_Snarks):
r.prod(x, Zero)
check: bool(r == Zero)
test(BN254_Snarks):
r.prod(Zero, x)
check: bool(r == Zero)
test(BN254_Snarks):
r.prod(x, One)
check: bool(r == x)
test(BN254_Snarks):
r.prod(One, x)
check: bool(r == x)
test(BLS12_381):
r.prod(x, Zero)
check: bool(r == Zero)
test(BLS12_381):
r.prod(Zero, x)
check: bool(r == Zero)
test(BLS12_381):
r.prod(x, One)
check: bool(r == x)
test(BLS12_381):
r.prod(One, x)
check: bool(r == x)
# test(BN462):
# r.prod(x, Zero)
# check: bool(r == Zero)
# test(BN462):
# r.prod(Zero, x)
# check: bool(r == Zero)
# test(BN462):
# r.prod(x, One)
# check: bool(r == x)
# test(BN462):
# r.prod(One, x)
# check: bool(r == x)
test "Multiplication and Squaring are consistent":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let a = rng.random(Fp12[C])
var rMul{.noInit.}, rSqr{.noInit.}: Fp12[C]
rMul.prod(a, a)
rSqr.square(a)
check: bool(rMul == rSqr)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Squaring the opposite gives the same result":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let a = rng.random(Fp12[C])
var na{.noInit.}: Fp12[C]
na.neg(a)
var rSqr{.noInit.}, rNegSqr{.noInit.}: Fp12[C]
rSqr.square(a)
rNegSqr.square(na)
check: bool(rSqr == rNegSqr)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "Multiplication and Addition/Substraction are consistent":
template test(C: static Curve) =
block:
proc testInstance() =
for _ in 0 ..< Iters:
let factor = rand(-30..30)
let a = rng.random(Fp12[C])
if factor == 0: continue
var sum{.noInit.}, one{.noInit.}, f{.noInit.}: Fp12[C]
one.setOne()
if factor < 0:
sum.neg(a)
f.neg(one)
for i in 1 ..< -factor:
sum -= a
f -= one
else:
sum = a
f = one
for i in 1 ..< factor:
sum += a
f += one
var r{.noInit.}: Fp12[C]
r.prod(a, f)
check: bool(r == sum)
testInstance()
# test(BN254_Nogami)
test(BN254_Snarks)
test(BLS12_377)
test(BLS12_381)
# test(BN446)
# test(FKM12_447)
# test(BLS12_461)
# test(BN462)
test "𝔽p12 = 𝔽p6[√∛(1+𝑖)] addition is associative and commutative":
proc abelianGroup(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random(Fp12[curve])
let b = rng.random(Fp12[curve])
let c = rng.random(Fp12[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve]
# r0 = (a + b) + c
tmp1.sum(a, b)
tmp2.sum(tmp1, c)
let r0 = tmp2
# r1 = a + (b + c)
tmp1.sum(b, c)
tmp2.sum(a, tmp1)
let r1 = tmp2
# r2 = (a + c) + b
tmp1.sum(a, c)
tmp2.sum(tmp1, b)
let r2 = tmp2
# r3 = a + (c + b)
tmp1.sum(c, b)
tmp2.sum(a, tmp1)
let r3 = tmp2
# r4 = (c + a) + b
tmp1.sum(c, a)
tmp2.sum(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
# abelianGroup(BN254_Nogami)
abelianGroup(BN254_Snarks)
abelianGroup(BLS12_377)
abelianGroup(BLS12_381)
# abelianGroup(BN446)
# abelianGroup(FKM12_447)
# abelianGroup(BLS12_461)
# abelianGroup(BN462)
test "𝔽p12 = 𝔽p6[√∛(1+𝑖)] multiplication is associative and commutative":
proc commutativeRing(curve: static Curve) =
for _ in 0 ..< Iters:
let a = rng.random(Fp12[curve])
let b = rng.random(Fp12[curve])
let c = rng.random(Fp12[curve])
var tmp1{.noInit.}, tmp2{.noInit.}: Fp12[curve]
# r0 = (a * b) * c
tmp1.prod(a, b)
tmp2.prod(tmp1, c)
let r0 = tmp2
# r1 = a * (b * c)
tmp1.prod(b, c)
tmp2.prod(a, tmp1)
let r1 = tmp2
# r2 = (a * c) * b
tmp1.prod(a, c)
tmp2.prod(tmp1, b)
let r2 = tmp2
# r3 = a * (c * b)
tmp1.prod(c, b)
tmp2.prod(a, tmp1)
let r3 = tmp2
# r4 = (c * a) * b
tmp1.prod(c, a)
tmp2.prod(tmp1, b)
let r4 = tmp2
# ...
check:
bool(r0 == r1)
bool(r0 == r2)
bool(r0 == r3)
bool(r0 == r4)
# commutativeRing(BN254_Nogami)
commutativeRing(BN254_Snarks)
commutativeRing(BLS12_377)
commutativeRing(BLS12_381)
# commutativeRing(BN446)
# commutativeRing(FKM12_447)
# commutativeRing(BLS12_461)
# commutativeRing(BN462)
test "𝔽p6 = 𝔽p2[∛(1+𝑖)] extension field multiplicative inverse":
proc mulInvOne(curve: static Curve) =
var one: Fp12[curve]
one.setOne()
block: # Inverse of 1 is 1
var r {.noInit.}: Fp12[curve]
r.inv(one)
check: bool(r == one)
var aInv, r{.noInit.}: Fp12[curve]
for _ in 0 ..< Iters:
let a = rng.random(Fp12[curve])
aInv.inv(a)
r.prod(a, aInv)
check: bool(r == one)
r.prod(aInv, a)
check: bool(r == one)
# mulInvOne(BN254_Nogami)
mulInvOne(BN254_Snarks)
mulInvOne(BLS12_377)
mulInvOne(BLS12_381)
# mulInvOne(BN446)
# mulInvOne(FKM12_447)
# mulInvOne(BLS12_461)
# mulInvOne(BN462)