313 lines
10 KiB
Python
313 lines
10 KiB
Python
#!/usr/bin/sage
|
|
# vim: syntax=python
|
|
# vim: set ts=2 sw=2 et:
|
|
|
|
# Constantine
|
|
# Copyright (c) 2018-2019 Status Research & Development GmbH
|
|
# Copyright (c) 2020-Present Mamy André-Ratsimbazafy
|
|
# Licensed and distributed under either of
|
|
# * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
|
|
# * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
|
|
# at your option. This file may not be copied, modified, or distributed except according to those terms.
|
|
|
|
# ############################################################
|
|
#
|
|
# Frobenius constants
|
|
#
|
|
# ############################################################
|
|
|
|
# Imports
|
|
# ---------------------------------------------------------
|
|
|
|
import os
|
|
import inspect, textwrap
|
|
|
|
# Working directory
|
|
# ---------------------------------------------------------
|
|
|
|
os.chdir(os.path.dirname(__file__))
|
|
|
|
# Sage imports
|
|
# ---------------------------------------------------------
|
|
# Accelerate arithmetic by accepting probabilistic proofs
|
|
from sage.structure.proof.all import arithmetic
|
|
arithmetic(False)
|
|
|
|
load('curves.sage')
|
|
|
|
# Utilities
|
|
# ---------------------------------------------------------
|
|
|
|
def fp2_to_hex(a):
|
|
v = vector(a)
|
|
return '0x' + Integer(v[0]).hex() + ' + β * ' + '0x' + Integer(v[1]).hex()
|
|
|
|
def field_to_nim(value, field, curve, prefix = "", comment_above = "", comment_right = ""):
|
|
result = '# ' + comment_above + '\n' if comment_above else ''
|
|
comment_right = ' # ' + comment_right if comment_right else ''
|
|
|
|
if field == 'Fp2':
|
|
v = vector(value)
|
|
|
|
result += inspect.cleandoc(f"""
|
|
{prefix}Fp2[{curve}].fromHex( {comment_right}
|
|
"0x{Integer(v[0]).hex()}",
|
|
"0x{Integer(v[1]).hex()}"
|
|
)""")
|
|
elif field == 'Fp':
|
|
result += inspect.cleandoc(f"""
|
|
{prefix}Fp[{curve}].fromHex( {comment_right}
|
|
"0x{Integer(value).hex()}")
|
|
""")
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
return result
|
|
|
|
# Code generators
|
|
# ---------------------------------------------------------
|
|
|
|
def genFrobeniusMapConstants(curve_name, curve_config):
|
|
embdeg = curve_config[curve_name]['tower']['embedding_degree']
|
|
twdeg = curve_config[curve_name]['tower']['twist_degree']
|
|
g2field = f'Fp{embdeg//twdeg}' if (embdeg//twdeg) > 1 else 'Fp'
|
|
|
|
p = curve_config[curve_name]['field']['modulus']
|
|
Fp = GF(p)
|
|
K.<u> = PolynomialRing(Fp)
|
|
if g2field == 'Fp2':
|
|
QNR_Fp = curve_config[curve_name]['tower']['QNR_Fp']
|
|
Fp2.<beta> = Fp.extension(u^2 - QNR_Fp)
|
|
else:
|
|
SNR_Fp = curve_config[curve_name]['tower']['SNR_Fp']
|
|
Fp2.<beta> = Fp.extension(u^2 - SNR_Fp)
|
|
|
|
if g2field == 'Fp2':
|
|
SNR = curve_config[curve_name]['tower']['SNR_Fp2']
|
|
SNR = Fp2(SNR)
|
|
else:
|
|
# To build the Fp6 extension, since we use a SexticNonResidue
|
|
# to build Fp2, we can reuse it as a cubic non-residue
|
|
# It always has [0, 1] coordinates in Fp2
|
|
SNR = Fp2([0, 1])
|
|
|
|
halfK = embdeg//2
|
|
|
|
print('\n----> Frobenius extension field constants <----\n')
|
|
buf = inspect.cleandoc(f"""
|
|
# Frobenius map - on extension fields
|
|
# -----------------------------------------------------------------
|
|
|
|
# We start from base frobenius constant for a {embdeg} embedding degree.
|
|
# with
|
|
# - a sextic twist, SNR being the Sextic Non-Residue.
|
|
# - coef being the Frobenius coefficient "ID"
|
|
# c = SNR^((p-1)/{halfK})^coef
|
|
#
|
|
# On Fp2 frobenius(c) = conj(c) so we have
|
|
# For n=2, with n the number of Frobenius applications
|
|
# c2 = c * (c^p) = c * frobenius(c) = c * conj(c)
|
|
# c2 = (SNR * conj(SNR))^((p-1)/{halfK})^coef)
|
|
# c2 = (norm(SNR))^((p-1)/{halfK})^coef)
|
|
# For k=3
|
|
# c3 = c * c2^p = c * frobenius(c2) = c * conj(c2)
|
|
# with conj(norm(SNR)) = norm(SNR) as a norm is strictly on the base field.
|
|
# c3 = (SNR * norm(SNR))^((p-1)/{halfK})^coef)
|
|
#
|
|
# A more generic formula can be derived by observing that
|
|
# c3 = c * c2^p = c * (c * c^p)^p
|
|
# c3 = c * c^p * c^p²
|
|
# with 4, we have
|
|
# c4 = c * c3^p = c * (c * c^p * c^p²)^p
|
|
# c4 = c * c^p * c^p² * c^p³
|
|
# with n we have
|
|
# cn = c * c^p * c^p² ... * c^p^(n-1)
|
|
# cn = c^(1+p+p² + ... + p^(n-1))
|
|
# This is the sum of first n terms of a geometric series
|
|
# hence cn = c^((p^n-1)/(p-1))
|
|
# We now expand c
|
|
# cn = SNR^((p-1)/{halfK})^coef^((p^n-1)/(p-1))
|
|
# cn = SNR^((p^n-1)/{halfK})^coef
|
|
# cn = SNR^(coef * (p^n-1)/{halfK})
|
|
|
|
const {curve_name}_FrobeniusMapCoefficients* = [
|
|
""")
|
|
|
|
arr = ""
|
|
maxN = 3 # We only need up to f^(p^3) in final exponentiation
|
|
|
|
for n in range(1, maxN + 1):
|
|
for coef in range(halfK):
|
|
if coef == 0:
|
|
arr += f'\n# frobenius({n}) -----------------------\n'
|
|
arr += '['
|
|
frobmapcoef = SNR^(coef*((p^n-1)/halfK))
|
|
hatN = '^' + str(n) if n>1 else ''
|
|
arr += field_to_nim(frobmapcoef, 'Fp2', curve_name, comment_right = f'SNR^((p{hatN}-1)/{halfK})^{coef}')
|
|
if coef != halfK - 1:
|
|
arr += ',\n'
|
|
arr += '],\n'
|
|
|
|
buf += textwrap.indent(arr, ' ')
|
|
buf += ']'
|
|
return buf
|
|
|
|
def genFrobeniusPsiConstants(curve_name, curve_config):
|
|
embdeg = curve_config[curve_name]['tower']['embedding_degree']
|
|
twdeg = curve_config[curve_name]['tower']['twist_degree']
|
|
twkind = curve_config[curve_name]['tower']['twist']
|
|
g2field = f'Fp{embdeg//twdeg}' if (embdeg//twdeg) > 1 else 'Fp'
|
|
|
|
p = curve_config[curve_name]['field']['modulus']
|
|
Fp = GF(p)
|
|
K.<u> = PolynomialRing(Fp)
|
|
if g2field == 'Fp2':
|
|
QNR_Fp = curve_config[curve_name]['tower']['QNR_Fp']
|
|
Fp2.<beta> = Fp.extension(u^2 - QNR_Fp)
|
|
|
|
if g2field == 'Fp2':
|
|
SNR = curve_config[curve_name]['tower']['SNR_Fp2']
|
|
SNR = Fp2(SNR)
|
|
else:
|
|
SNR = curve_config[curve_name]['tower']['SNR_Fp']
|
|
SNR = Fp(SNR)
|
|
|
|
print('\n----> ψ (Psi) - Untwist-Frobenius-Twist Endomorphism constants <----\n')
|
|
buf = inspect.cleandoc(f"""
|
|
# ψ (Psi) - Untwist-Frobenius-Twist Endomorphisms on twisted curves
|
|
# -----------------------------------------------------------------
|
|
""")
|
|
buf += '\n'
|
|
if twkind == 'D_Twist':
|
|
buf += f'# {curve_name} is a D-Twist: psi1_coef1 = SNR^((p-1)/{twdeg})\n\n'
|
|
xi = SNR
|
|
snrUsed = 'SNR'
|
|
else:
|
|
buf += f'# {curve_name} is a M-Twist: psi1_coef1 = (1/SNR)^((p-1)/{twdeg})\n\n'
|
|
xi = 1/SNR
|
|
snrUsed = '(1/SNR)'
|
|
|
|
maxPsi = CyclotomicField(embdeg).degree()
|
|
|
|
for n in range(1, maxPsi+1):
|
|
for coef in range(2, 3+1):
|
|
# Same formula as FrobeniusMap constants
|
|
# except that
|
|
# - we only need 2 coefs for elliptic curve twists
|
|
# - xi = SNR or 1/SNR depending on D-Twist or M-Twist respectively
|
|
# - the divisor is the twist degree isntead of half the embedding degree
|
|
frobpsicoef = xi^(coef*(p^n - 1)/twdeg)
|
|
hatN = '^' + str(n) if n>1 else ''
|
|
buf += field_to_nim(
|
|
frobpsicoef, g2field, curve_name,
|
|
prefix = f'const {curve_name}_FrobeniusPsi_psi{n}_coef{coef}* = ',
|
|
comment_above = f'{snrUsed}^({coef}(p{hatN}-1)/{twdeg})'
|
|
) + '\n'
|
|
|
|
buf += '\n'
|
|
|
|
buf += inspect.cleandoc(f"""
|
|
# For a sextic twist
|
|
# - p ≡ 1 (mod 2)
|
|
# - p ≡ 1 (mod 3)
|
|
#
|
|
# psi2_coef3 is always -1 (mod p^m) with m = embdeg/twdeg
|
|
# Recap, with ξ (xi) the sextic non-residue for D-Twist or 1/SNR for M-Twist
|
|
# psi_2 ≡ ξ^((p-1)/6)^2 ≡ ξ^((p-1)/3)
|
|
# psi_3 ≡ psi_2 * ξ^((p-1)/6) ≡ ξ^((p-1)/3) * ξ^((p-1)/6) ≡ ξ^((p-1)/2)
|
|
#
|
|
# In Fp² (i.e. embedding degree of 12, G2 on Fp2)
|
|
# - quadratic non-residues respect the equation a^((p²-1)/2) ≡ -1 (mod p²) by the Legendre symbol
|
|
# - sextic non-residues are also quadratic non-residues so ξ^((p²-1)/2) ≡ -1 (mod p²)
|
|
# - QRT(1/a) = QRT(a) with QRT the quadratic residuosity test
|
|
#
|
|
# We have psi2_3 ≡ psi_3 * psi_3^p ≡ psi_3^(p+1)
|
|
# ≡ (ξ^(p-1)/2)^(p+1) (mod p²)
|
|
# ≡ ξ^((p-1)(p+1)/2) (mod p²)
|
|
# ≡ ξ^((p²-1)/2) (mod p²)
|
|
# And ξ^((p²-1)/2) ≡ -1 (mod p²) since ξ is a quadratic non-residue
|
|
# So psi2_3 ≡ -1 (mod p²)
|
|
#
|
|
#
|
|
# In Fp (i.e. embedding degree of 6, G2 on Fp)
|
|
# - Fermat's Little Theorem gives us a^(p-1) ≡ 1 (mod p)
|
|
#
|
|
# psi2_3 ≡ ξ^((p-1)(p+1)/2) (mod p)
|
|
# ≡ ξ^((p+1)/2)^(p-1) (mod p) as we have 2|p+1
|
|
# ≡ 1 (mod p) by Fermat's Little Theorem
|
|
""")
|
|
|
|
return buf
|
|
|
|
# CLI
|
|
# ---------------------------------------------------------
|
|
|
|
if __name__ == "__main__":
|
|
# Usage
|
|
# BLS12-381
|
|
# sage sage/derive_frobenius.sage BLS12_381
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
parser = ArgumentParser()
|
|
parser.add_argument("curve",nargs="+")
|
|
args = parser.parse_args()
|
|
|
|
curve = args.curve[0]
|
|
|
|
if curve not in Curves:
|
|
raise ValueError(
|
|
curve +
|
|
' is not one of the available curves: ' +
|
|
str(Curves.keys())
|
|
)
|
|
else:
|
|
trace = Curves[curve]['field']['trace']
|
|
print(f'trace of Frobenius ({int(trace).bit_length()}-bit): 0x{Integer(trace).hex()}')
|
|
|
|
FrobMap = genFrobeniusMapConstants(curve, Curves)
|
|
FrobPsi = genFrobeniusPsiConstants(curve, Curves)
|
|
|
|
with open(f'{curve.lower()}_frobenius.nim', 'w') as f:
|
|
f.write(copyright())
|
|
f.write('\n\n')
|
|
|
|
embdeg = Curves[curve]['tower']['embedding_degree']
|
|
twdeg = Curves[curve]['tower']['twist_degree']
|
|
|
|
if embdeg//twdeg >= 2:
|
|
f.write(inspect.cleandoc("""
|
|
import
|
|
../config/curves,
|
|
../towers,
|
|
../io/io_towers
|
|
"""))
|
|
else:
|
|
f.write(inspect.cleandoc("""
|
|
import
|
|
../config/[curves, type_ff],
|
|
../towers,
|
|
../io/[io_fields, io_towers]
|
|
"""))
|
|
f.write('\n\n')
|
|
f.write(FrobMap)
|
|
f.write('\n\n')
|
|
f.write(FrobPsi)
|
|
|
|
print(f'Successfully created {curve}_frobenius.nim')
|
|
|
|
print(inspect.cleandoc("""\n
|
|
For testing you can verify the following invariants:
|
|
|
|
Galbraith-Lin-Scott, 2008, Theorem 1
|
|
Fuentes-Castaneda et al, 2011, Equation (2)
|
|
ψ(ψ(P)) - t*ψ(P) + p*P == Infinity
|
|
|
|
Galbraith-Scott, 2008, Lemma 1
|
|
The cyclotomic polynomial with GΦ(ψ(P)) == Infinity
|
|
Hence for embedding degree k=12
|
|
ψ⁴(P) - ψ²(P) + P == Infinity
|
|
for embedding degree k=6
|
|
ψ²(P) - ψ(P) + P == Infinity
|
|
"""))
|